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ABSTRACT 

 

Remote sensing of evapotranspiration (ET) that is based on surface energy 

balance has been considered a reliable method for estimating ET over large spatially 

varying areas and at high resolution. Energy balance techniques require both short wave 

and thermal satellite information to produce estimates of surface fluxes including ET, and 

the accuracy of those estimates is directly dependent upon proper model calibration. A 

method to obtain estimates of ET using only satellite based vegetation indices, requiring 

only short wave satellite data, coupled with separate estimates of evaporation from bare 

soil has been examined. The use of Kcb-NDVI relationships coupled with procedures for 

estimating evaporation using water balance model techniques can assist water managers 

in the estimation of seasonal ET fluxes over agricultural areas of southern Idaho, when 

thermal satellite information is not available to supply more accurate energy balance 

based techniques. Seasonal ET estimates using the satellite based Kcb-NDVI relationship 

coupled water balance models were within ± 5 % of ET observations from the energy 

balance based model Mapping Evapotranspiration at High Resolution with Internalized 

Calibration (METRIC), for most crops within the Magic Valley of southern Idaho. 

Statistical methods were also examined for the statistical selection of ‘anchor’ pixels used 

in the calibration of the energy balance based METRIC ET estimation model. 

Statistically calibrated METRIC application produced differences in seasonal ET from 

user calibrated METRIC estimates that were less than 3 % of the total seasonal reference 

ET. The statistical calibration procedure can reduce the uncertainty in ET estimates 

associated with the subjective user defined calibration for inexperienced users or for users 

with out good background in ET fluxes and radiation physics. 
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1.0 INTRODUCTION 

Increasingly higher demands are being placed on water resources each year. With 

the increasing stress, water resource managers must continually expand methods to assist 

them in the quantification and allocation of water consumptive use. In 2000, irrigation 

was the single largest use of fresh water with an estimated 153 million acre-feet of water 

used in the United States for irrigating over 60 million acres of agricultural fields, golf 

courses, parks and nurseries (Hutson et al, 2004). In the arid region of the western United 

States, where irrigated agricultural practices, species conservation and drought often 

collide, quantifying water use becomes increasingly vital. 

The quantification of water consumption requires knowledge of the evaporation 

of water from the earth and plant surfaces as well as how water is consumed by plants by 

way of transpiration. The combination of these two phenomena, namely surface 

evaporation and transpiration, are collectively referred to as evapotranspiration. 

Evapotranspiration (ET) is the largest consumer of irrigated water and quantifying the 

amount of ET occurring in an area provides water managers a valuable tool for 

quantifying water consumption. 

ET is difficult and expensive to measure on an operational basis. The weather 

conditions of a given area determine, to a large extent, the amount of energy available for 

evaporation while soil moisture and crop cover determine how that available energy will 

be used (Wright 1990). Traditionally water managers have used reference ET and 

reference ET based crop coefficients (Kc) to assess how much of the available energy is 

utilized in ET. 

The reference ET based crop coefficient method was developed for optimal 

growing conditions, which can overlook actual stressed crop conditions. The crop 

coefficient method is also limited in its ability to describe spatial variability; therefore, it 

can only give highly accurate estimates over medium-scale areas (multiple fields). 

In order to increase the utility of ET estimates, water planners must acquire data 

over large areas and over long periods of time, such as entire water seasons. It is also 
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important to have capability to estimate ET from individual fields or water holdings. ET 

can be estimated in various ways and at varying spatial and temporal time scales. Direct 

measurement techniques, while well documented, cannot provide sufficiently large 

spatial data and are not well suited for watershed level management; however, direct 

measurement techniques do provide vital information for model calibration and crop 

coefficient development. Considering the large spatial and temporal variation in the 

parameters controlling ET processes, it is not surprising that Remote Sensing (satellite) 

and GIS-based applications have become powerful tools in large scale ET calculation in 

the arid western United States. 

1.1. Problem Statement 

The energy balance method based on remote sensing techniques requires radiation 

information in the visible and near infrared wavelengths, as well as in the thermal 

infrared wavelengths. Data collected from satellites within the thermal infrared 

wavelength is critical for surface temperature determination and accurate estimation of 

the soil and sensible heat fluxes used in energy balance. Thermal data have been 

available from satellites since 1982 with the launch of Landsat 4. Since that time, thermal 

data have been available from several different satellites. In 2003, the Landsat 7 satellite 

was severely damaged leaving Landsat 5 as the remaining Landsat satellite available for 

obtaining high-resolution spatial thermal data. The Landsat 5 satellite is well past its 

planned operational life of ten years and to date no concrete plans have been made for 

replacement with Landsat-resolution satellites equipped with high spatial resolution 

thermal imagers. At the earliest, any future Landsat satellite equipped with a thermal 

sensor would be launched in 2011 (Irons, J. NASA 2006 Press conference). 

Several satellites exist which are equipped with thermal imagers but none can 

compare with the utility and spatial and temporal resolution of Landsat. The Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), for example, is 

equipped with a reasonable high-resolution thermal sensor (90 by 90m), but images from 

ASTER have limited and intermittent coverage. NASA’s Moderate Resolution Imaging 

Spectrometer (MODIS) has thermal capabilities but lacks vital spatial resolution with 
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thermal images at the 1 by 1km resolution. This makes it impossible to analyze ET fluxes 

within individual fields. 

With the oncoming gap in thermal information, an alternative method for 

obtaining accurate ET estimates using only the high resolution visible and near infrared 

wavelengths of alternative satellites would be a valuable tool for water resource 

managers. Spectral combinations of the visible and near infrared bands can be used to 

calculate vegetation indices that in turn can be coupled with methods for determining 

evaporative losses from the soil surface using soil water balance to produce estimates of 

total ET. This combination could provide a useful remote sensing based tool for obtaining 

accurate estimates of ET between image dates and for entire growing seasons. 

1.2. Objectives 

 
• The first objective of this study was to develop and test a method for combining 

basal crop coefficients (Kcb) derived from the normalized vegetation index 

(NDVI), or other index derived from the short wave bands, for crops located in 

southern Idaho with Ke derived via the FAO 56 dual crop coefficient procedure 

for estimating the evaporation component, Ke. Ke is added to the Kcb obtained 

from NDVI to produce the total crop coefficient Kc. Account will be given for 

precipitation and irrigation events in determination of Ke using soil water balance 

procedures. 

• The second objective of this project is to examine possible methods for the 

automatic selection of the cold and hot pixel selection process used in the 

calibration of METRIC. This will provide users having little background in 

energy balance physics with an accurate method for anchor pixel selection and 

model usage. This method will improve estimates in the soil and latent heat fluxes 

used to complete the energy balance. 

1.3. Study Area 

The study area is the Magic Valley located in south central Idaho. The area is a 

major agricultural area having a wide range of crops. For this study the major crops of 
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alfalfa, potatoes, beans, corn, sugar beets, spring grain, and winter grain were analyzed 

based on a satellite based crop classification conducted in years 2000 (Tasumi et al 

2003). The major methods of irrigation within the Magic Valley are center pivot, furrow 

irrigation, wheel line, and hand line irrigation systems. Water is collected from a 

combination of surface water from the Snake River and groundwater from the underlying 

Snake River Aquifer. The area has a semiarid climate and receives a mean average 

precipitation of 280 mm. 

  
Figure 1.3-1 Magic Valley agricultural area in Southern Idaho (Taken from Tasumi et al, 
2007) 

Extensive research in crop ET within the Magic Valley has been carried out for 

many years, and significant lysimeter and weather data collected for many years make the 

area well suited for continued ET studies (Wright et al 1972, Wright 1982, Allen et al 

1989). The study was conducted using year 2000 Landsat 5 and Landsat 7 images 

obtained over the Magic Valley (Path 40 Row 30). A total of 12 images were available 

for the analysis. 
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2.0 LITERATURE REVIEW 

2.1. Evapotranspiration Theory 

ET is the combination of evaporation from the surface and transpiration from 

plants. The term ET can be used synonymously with consumptive use, and is a vital 

component of the hydrologic cycle. Its role and quantification within the hydrologic cycle 

can be particularly important in arid climates as well as other parts of the world where 

water resource reallocation is necessary to accommodate expanding populations, and 

changing land uses. An understanding of the processes involved with ET is becoming 

increasingly vital for the proper planning and operation of water resource projects 

(ASCE, 2007). 

Evaporation from soil surfaces makes up a significant portion of the total ET 

occurring from a given land surface. The process of evaporation requires energy and is 

the process of changing the state of liquid water to a gaseous state. The amount of 

evaporation occurring from a land surface or water body is governed mainly by the 

amount of energy available at the surface to facilitate the change of state coupled with 

ability of the surrounding air to transfer the wet air to the atmosphere.  

Plants take up nutrients and water through their root systems and the water 

molecules taken up are lost as vapor, through the plants leaves in the process of 

transpiration. Nearly all of this vaporization of water occurs within the plants leaves and 

the vapor exists into the atmosphere through the plants stomata. The stomata can open 

and close releasing lesser amounts of vapor in times of water shortage or plant stress. The 

amount of transpiration occurring is strongly related to crop characteristics and 

environmental conditions. Through the transpiration process some water is retained 

within the plant tissue, but the amount is sufficiently small to permit its neglecting in total 

ET estimation. Jensen (1968) observed that the total amount of water retained within the 

plant tissue is lees than 1% of the total growing season ET. 

Because it is very difficult to distinguish between the processes of evaporation 

and transpiration, measurement techniques look at the combined process of total ET. At 
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varying times of the year one process may play a larger role than the other in the process 

of transferring water vapor to the atmosphere. As seen in Figure 2.1-1 early in the year 

when a crop has yet to develop, the majority of the total ET occurring is due to 

evaporation from the ground surface. As a given crop develops a larger percentage of the 

total ET is represented by crop transpiration. 

 
Figure 2.1-1 Partitioning of evaporation and transpiration over an entire growing season 
(following FAO 56 Allen et al 1998) 

The ET process is controlled by the combination of water supply for evaporation, 

energy available to vaporize the water, air humidity, and the ability of the surrounding air 

to transport the vapor away from the surface. A useful concept in the analysis of ET is the 

potential ET. The potential ET is defined as the amount of ET which can occur under a 

given climatic and atmospheric condition, where water supply is not limited. The 

potential ET can be thought of as the maximum amount of ET possible given an area’s 

soil, plant, and atmospheric conditions. The units of ET are generally expressed as a unit 

depth over a given time (ex. mm/day, mm/year). 

Reference Evapotranspiration 

Because crop surfaces rarely remain wet for long periods of time, the potential ET 

has limited usefulness. In 1968 Jenson introduced the use of reference crop ET which 

refers to the rate of ET occurring from a reference surface which again is not limited by 
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water supply. Typically the reference ET is determined for a hypothetical clipped grass or 

alfalfa crop. The determination of reference crop ET identifies the evaporative power of 

the atmosphere at a given location, on a typical reference crop surface (Allen et al, 1998). 

The reference ET (ETr) is calculated using weather data collected at or near the area of 

interest and is then used as a reference to estimate specific crop evapotranspiration using 

crop coefficients. 

The evolution of methods for ETr calculation has been a constant process over the 

last half a century. Major estimation methods have been utilized which are based on 

radiation physics, aerodynamic transport, open water pan evaporation, and various forms 

of the Penman formulation (Penman, 1948). Some of the most trusted estimation 

techniques use a combination method using both energy balance concepts as well as 

aerodynamic equations.  

In an effort to develop a standardized method for calculating ETr, the Irrigation 

Association (IA) called on the American Society of Civil Engineers (ASCE) in 1999, to 

determine a benchmark reference evapotranspiration equation that could be used by 

federal and private entities throughout the United States. As a result of this request the 

Evaporation in Irrigation and Hydrology Committee – Environmental and Water 

Resources Institute (ASCE-ET) set out to test current reference ET equations used 

throughout the United States and the World.  

The ASCE-ET evaluated the results of ET estimates from a total of 13 equations 

representing data from 36 sites and a total of 61 test years (Allen et al, 2002). With a 

combination of over a hundred years of experience using the various reference ET 

equations, the ASCE-ET members quickly established the ASCE Standardized Penman 

Monteith equation. While many equations exist the ASCE Standardized Penman 

Monteith equation (Allen et al, 2005) has produced strong results and is given by: 
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Where ∆ is the slope of the saturation vapor pressure curve (kPa/°C), Rn is net radiation 

(MJ/m2/day), G is the soil heat flux (MJ/m2/day), γ  is the psychometric constant 

(kPa/°C), T is the mean air temperature (°C), u2 is the mean wind speed measured at 2 

meters above the ground surface (m/s), es is the saturation vapor pressure (kPa), ea is the 

actual vapor pressure of the air (kPa), and Cn and Cd are coefficients which vary 

depending on the time scale used for the calculation as well as the type of reference crop 

(ASCE-EWRI, 2002). 

 The ASCE-ET defined two standardized reference surfaces, one representing a 

short crop with a vegetation height of approximately 0.12 m, and the other surface 

representing a tall crop with a height of approximately 0.5 m (ASCE-EWRI, 2002). The 

two reference surfaces were selected due to there similarity to the commonly used grass 

and alfalfa references used throughout the world as well as their widespread applicability 

to both agricultural and landscape irrigation projects, as stipulated in the original IA 

request (Allen et al, 2002).  

 As seen in Figure 2.1-2, when coupled with accurate weather data, the ASCE 

standardized Penman-Monteith equation produces highly accurate estimates of actual 

crop ET. The comparisons made in Figure 2.1-2 were compiled using hourly weather 

data from the Twin Falls Idaho weather station near Kimberly Idaho (Allen et al, 2006). 

Measurements of alfalfa ET were collected by Dr. James Wright using a precision 

weighing lysimeter.  The first plot on the left is constructed using data from a cloud free, 

September 4, 1990. The plot on the right shows data collected from the same lysimeter 

several days later with cloud cover occurring later in the day. The ability of the equation 

to respond to rapid changes in weather parameters and reproduce precise lysimeter ET 

measurements provides confidence when accurate weather data are available.  
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Figure 2.1-2 Performance of the ACSE Standardized Penman Monteith equation for 
calculating hourly alfalfa reference ET (taken from Allen 2006, Lysimeter data from Dr. 
J.L. Wright, USDA-ARS)  

  

2.2. Crop Coefficient ET Estimation Methods 

Crop coefficients were first defined by Jensen (1968) for agricultural practice and 

are simply experimentally derived ratios of actual measured ET from a specific crop to 

the ET of a reference crop. Reference ET (ETr) is calculated from weather data for a 

defined reference crop such as alfalfa or grass, as described in chapter 2.1, and then the 

crop coefficient (Kc) relates the ET for the specific crop to the ETr reference. This type of 

ET estimation has been widely applied by water managers for its simplicity coupled with 

its respected accuracy and is given by: 

rcc ETKET =  (2) 

where ETc is the crop ET, Kc (ETc/ETr) is obtained from predetermined crop specific 

table values based on extensive research, which are sometimes adjusted for local climatic 

conditions and ETr is the reference crop ET generally calculated using the ASCE 

Standardized Penman Monteith equation, or FAO Penman-Monteith equation, and local 

hourly and daily weather data (Allen et al 1998, ASCE EWRI 2005).  

 The method requires meteorological weather data and specific crop type 

information and is often referred to as the single crop coefficient method (Allen et al, 
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1998). This crop coefficient procedure does not explicitly consider the effects of 

evaporation from the soil surface after wetting events. 

 

2.3. FAO 56 dual Crop Coefficient Method 

The FAO 56 dual crop coefficient method provides a procedure for estimating the 

evaporative effects of precipitation and irrigation events on the overall crop coefficient. 

In the dual method, the crop coefficient is divided into two coefficients representing crop 

transpiration (Kcb), and evaporation from bare soil (Ke) (Allen et al. 1998). 

recbSc ETKKKET )( +=  (3) 

Here Kcb represents the basal crop coefficient and is defined as the ratio of the 

crop ET to the reference ET, when the soil surface is dry but there is sufficient water 

within the root zone for transpiration to occur at the potential rate (Allen et al, 1998). The 

factor KS is a water stress coefficient applied to the basal crop coefficient which describes 

any effect of water stress on the crop transpiration. The evaporation component Ke is 

obtained by conducting a water balance in the upper most layer of the soil profile. It is 

from this upper layer, usually taken as the top 0.1 to 0.15m of the soil (Allen et al, 1998), 

that most of the soil evaporation included within ET occurs.  

Figure 2.3-1 shows a representation of a generalized crop curve developed by Dr. 

James Wright with the USDA-ARS near Kimberly Idaho (Wright, 1982, 1990). The dark 

solid line in the figure shows the basal coefficient, Kcb and the sharp spikes drawn as 

dashed lines represent Ke. The two curves combine to form the total Kc. It becomes 

apparent that the magnitude of Ke can be significant during periods of low crop cover. 

The average value of the Kc curve can be seen drawn in as a dotted line and labeled Kcm. 

As expected the average Kc curve lies slightly above the Kcb curve.  
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Figure 2.3-1 Generalized crop coefficient curve showing the evolution of the crop 
coefficient throughout the growing season, the basal Kc, and the effects of evaporation 
due to wetting events. (Taken from Wright, 1982, 1990) 

The dual crop coefficient method is used when daily ET values are needed and 

when the effects of wetting events are under consideration. The dual crop coefficient 

method has been shown to give precise estimates of ET by incorporating evaporation 

from bare soil due to irrigation and precipitation events (Allen et al, 2005). Splitting the 

total Kc into the plant and evaporation components better captures the impacts on total 

ET of soil water holding capacity, irrigation and precipitation frequency.  

2.4. Point Based ET measurements 

Evapotranspiration is very difficult to accurately measure. While several methods 

do exist, they are typically very expensive and require significant amount of experience 

and training. Routine measurements are not practical, and usually limited to 

measurements made by trained researchers for the validation of the more indirect 

measurement techniques discussed above (Allen et al, 1998).  

The most trusted method for the direct measurement of ET fluxes is the use of 

weighing lysimeters. Weighing lysimeters are isolated tanks of similar soil and crop type, 

 



 12

where water input and output are well controlled. The amount of ET is determined by the 

changes in weight as water evaporates. While highly accurate for time steps as short as an 

hour, the accuracy of the lysimeter is directly dependent upon expert set up and 

maintenance (Allen et al, 1991).   

Other techniques include the Bowen ratio and eddy covariance. Both require a 

high level of expertise and technical instrumentation. The Bowen ratio technique is 

considered the most practical and accurate micro-meteorological method (ASCE-EWRI, 

2005), but can overestimate ET when the readily available water in the root zone is low 

and when daily ET rates are greater than 6 mm per day.  

All point based ET measurement methods provide valuable information to water 

resource managers in quantifying consumptive use.  They are limited however to 

experienced technicians, and their ability to accurately assess the complex spatial 

variation in ET processes.  
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3.0 THEORY OF THE REMOTE SENSING OF ET  

3.1. Satellite Based Surface Energy Balance Methods  

Satellites can collect data over a given surface relatively frequently and as in the 

case of the Landsat 7 satellite, at a 30 by 30m resolution in the short wave spectrum and 

60 by 60m resolution in the thermal spectrum. This, coupled with meteorological data 

from a given area, can combine for accurate estimates of ET over large watersheds and 

for individual fields. This method of water consumption quantification has been 

extremely valuable in the intermountain west by assisting water managers in hydrologic 

modeling, quantifying water rights, estimating aquifer depletions from groundwater 

extraction, and quantifying the use of water by natural systems (Allen et al, 2007b). 

Many of the remotely sensed data techniques are based on the surface energy 

balance and have been considered the most accurate methods for estimating ET over 

large spatially varying areas and at high resolution (individual fields). Of the energy 

balance methods the Surface Energy Balance Algorithms for Land (SEBAL) 

(Bastiaanssen et al, 1998), and Mapping ET at High Resolution using Internalized 

Calibration (METRIC) (Allen et al, 2002) have been extensively used and tested for 

operational accuracy in the western United States (Bastiaanssen et al, 2005, Allen et al 

2007a,b). Other models developed for remote sensing techniques and energy balance 

methods are the Two Source Energy Balance (TSEB) (Norman et al, 1995) and the 

Surface Energy Balance System (SEBS) (Su et al, 2002). Both TSEB and SEBS have not 

been tested for operational accuracy.  

All energy balance models are based on determining the energy available to 

change the state of water from liquid to vapor from the energy balance equation given by: 

HGRLE n −−=  (4) 

where LE is the latent heat of vaporization available for ET (W/m2), Rn is the net 

radiation (W/m2), G is the soil heat flux (W/m2), and H is the sensible heat flux (W/m2). 
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Remotely sensed data from satellites are well suited for energy balance based 

determination of ET.  Satellite data include valuable information for both short wave and 

long wave radiation reflected and emitted from the earths’ surface, where the net fluxes 

of these radiation types and the surface are the primary sources of the energy required to 

change water molecules from liquid to vapor. Each term in the energy balance equation is 

calculated in both SEBAL and METRIC on a pixel-by-pixel basis. The net radiation at 

the surface providing the energy available for ET is calculated by: 

↓↑↓↓ −−−+−= LLLSn RRRRR )1()1( 0εα  (5) 

where RS↓ is the incoming short wave radiation (W/m2), RL↓ is the incoming long wave 

radiation (W/m2), RL↑ is the outgoing long wave radiation (W/m2), α is the surface albedo 

(dimensionless), and ε0 is the surface thermal emissivity (dimensionless).  

 The soil heat flux, G is defined as the heat storage into the soil and is calculated in 

METRIC and SEBAL by first calculating the ratio of G to Rn. In METRIC this is 

normally done utilizing the relationship developed Tasumi et al., (2003) given as: 
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when LAI is less than 0.5 m2/m2. The relationships for the G (W/m2) and Rn (W/m2) 

were developed specifically for the western United States, using soil heat flux data 

collected by Dr. J.L. Wright (USDA-ARS, ret.) near Kimberly Idaho. The ratio in 

equations 6 and 7 is a function of the surface temperature TS (K) and LAI (m2/m2) (the 

leaf area index). The LAI is equal to the total one-sided leaf area per unit area of ground 

surface and was calculated within METRIC by: 
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Here SAVIID is the soil adjusted vegetation index which is another commonly used 

dimensionless vegetation index and is discussed later in section 3.4. The subscript ID on 

SAVI refers to the use of SAVI calculation parameters which have been calibrated for 

Southern Idaho soils (section 3.4). Once this ratio from equation 6 or 7 is determined, G 

is simply calculated by multiplying the ratio by the previously determined value of Rn for 

each pixel within the image.  

The most difficult term in the energy balance equation to calculate using remote 

sensing is the sensible heat flux, H (W/m2). The sensible heat flux is given by: 

ah

p

r
dTc

H
ρ

=  (9) 

where ρ is the density of air (kg/m3), cp is the specific heat (1004 J/kg/K), dT is the 

vertical temperature difference between two heights (K), and rah is the aerodynamic 

resistance to heat transport (s/m). In this formulation, dT is the near surface air 

temperature difference between two elevations (Figure 3.1-1). 
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Figure 3.1-1 Sensible heat flux diagram showing the near surface temperature difference 
dT (Taken from Allen) 

 This temperature difference floats above the surface and is used because the 

difficulty in estimating precise surface temperatures using remote sensing due to 

radiometric scattering by atmospheric constituents and biases in the satellite sensors. 

Furthermore, the surface temperature measured by the satellite is not the same as the 

aerodynamic temperature needed for the heat transport process and work by Kustas et al. 

(1994), Norman et al. (1995), and Qualls and Brutsaert (1996) has shown that the 

temperature measured by radiometric means can deviate significantly from the 

aerodynamic temperature. In addition, ground based air temperature measurements are 

sparse and can not be used to explain the regional distribution of temperatures over 

varying land covers. Therefore, rather than parameterize both aerodynamic temperature 

and air temperature over an area, the simple temperature gradient dT is used , where dT 

‘floats’ above the surface between two heights Z1 and Z2 (Allen et al, 2007a). 

The use of dT allows for a method that is indexed from TS but does not depend 

upon the absolute value of TS. Basstiaanssen (1995) suggests that a strong linear 

relationship exists between dT and the radiometric surface temperature (Figure 3.1-2) 
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(Basstiaannssen et al (1998, 2005), Allen et al (2007a), Jacob et al (2002). The 

relationship can be expressed as: 

SaTbdT +=  (10) 

where the units of dT are in degrees K, TS is the radiometric surface temperature (K), and 

the coefficients a (K/K) and b (K) are empirical constants. While the linearity of the 

relationship between the radiometric surface temperature and the near surface 

temperature difference, dT, has been the topic of some debate (Norman et al, 2005), it is 

not the purpose of this thesis to prove its linearity. Future PhD work at the University of 

Idaho may more precisely analyze the linearity of the relationship and accompanying 

accuracy of ET estimates from METRIC based upon this assumption. 

To determine the values of the coefficients a and b used in equation 10, METRIC 

and SEBAL use two “anchor pixels” where accurate values of H can be estimated and 

utilize an iterative process for determining dT and rah. METRIC does this by selecting a 

“cold” anchor pixel at a location where the maximum ET and therefore minimum H is 

expected to occur. In METRIC this pixel is selected from an actively growing agricultural 

field and allows for the determination of the dT at the cold pixel (K) of: 

pcold

coldahcold
cold c

rH
dT

ρ
_=  (11) 

where rah_cold is the aerodynamic surface resistance to heat transport (s/m), ρcold is the 

density of air at the cold pixel (kg/m3), cp is the air specific heat (1004 J/kg/K), and Hcold 

is determined from the previous calculations of Rn (equation 5), G( equations 6 and 7), 

and ETr (equation 1) as:  Hcold = Rn-G-1.05*λ*ETr , where λ is the latent heat of 

vaporization defined in equation 16 (J/kg) and where Rn and G represent specific values 

for the cold pixel.  

 In a large image (Landsat images are 185 by 185km) it is possible that some fields 

will have a wet soil surface underneath the crop canopy, which can increase the total ET 

up to 5% above the computed reference ET (Allen et al 2006a). For this reason METRIC 

applies the factor of 1.05 to the ETr for the Hcold. Also, it is noted that the use of ETr at 
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the cold pixel in the calibration process, helps to minimize the impact of regional 

advection and wind speed on ET estimates at the moment of the satellite image (Allen et 

al, 2007). The utility of ETr in reducing error in other energy balance parameters such as 

Rn, is discussed later in section 3.2. The aerodynamic resistance used in the dTcold 

equation is then computed iteratively for stability correction, with the first iteration 

assuming neutral stability using the friction velocity determined using a logarithmic wind 

law. With the dT calculated at the cold pixel and the associated temperature at that pixel, 

the lower point on the dT versus surface temperature is defined (Figure 3.1-2). 

Surface Temperature (K)

dT
 (K

)

dT Hot

dT Cold

TS Cold TS Hot

 
Figure 3.1-2 Linear relationship between dT and Ts used in the METRIC calibration 
process for the sensible heat H. 

The METRIC calibration process also requires the selection of a “hot” anchor 

pixel (the second point on the dT versus TS relationship seen in Figure 3.1-2), where it 

can be assumed that H is at a maximum value (i.e. ET = 0). This pixel is selected from a 

dry bare agricultural field within the image. If precipitation events have occurred within 

the last one to ten days, a soil water balance is conducted to determine if the ET can 

really be assumed to be equal to or 0 or near zero. In the presence of antecedent soil 

moisture conditions, some evaporation from the soil will exist and the value of ET for the 

hot pixel must be adjusted accordingly. Details for this adjustment are given in Allen et 

al, (2007a). The dT for the hot pixel is then given by: 
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phot

hotahhot
hot c

rH
dT

ρ
_=  (12) 

where dT has units of degrees K, rah_hot is the aerodynamic resistance to heat transport at 

the hot pixel (s/m), ρhot is the air density at the hot pixel (kg/m3), cp is the specific heat 

(1004 J/kg/K), and with Hhot = Rn – G – λ*EThot. In most cases EThot is assumed to be 

zero and from a dry agricultural pixel with no vegetation cover and a dry soil surface 

layer. However, as mentioned previously, antecedent soil moisture conditions must be 

considered by running a soil water balance at the hot pixel. The FAO 56 (Allen et al, 

1998) discussed latter, gives a procedure for conducting this water balance to determine 

the amount of residual evaporation likely to occur from any bare soil due to precipitation. 

Both the cold and hot anchor pixels used in METRIC are selected within about 20 km of 

the location of weather station from which precipitation and other weather parameters are 

measured, to reduce differences in wind speed and ETr among the locations.  

With the two equations for dTcold and dThot the coefficients a and b are then 

calculated using: 

coldShotS

coldhot

TT
dTdT

a
__ −

−
=  (13) 

and 

hotShot aTdTb _−=  (14) 

Where TS_hot is the radiometric surface temperature sampled at the hot pixel location (K), 

and TS_cold is the surface temperature of the cold pixel (K). Again a has units of K/K and b 

has units of degrees K. 

With both a and b, the resulting dT can be used to determine an improved 

estimate of rah and an iterative process on boundary layer stability correction (Allen et al., 

2007a) follows until successive values for dT and rah have stabilized.  

The latent heat loss from the surface caused by ET, LE (W/m2) can now be 

determined using the energy balance equation described by equation 4 and the estimates 
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of Rn, G, and H. The instantaneous ET, ETinst (mm/hr) at the time of satellite over pass is 

then calculated by: 

λ
LEETinst 3600=  (15) 

Where λ (J/kg) is the latent heat of vaporization which is the heat absorbed when one 

kilogram of water evaporates. This can be calculated following Harrison (1963) as a 

function of surface temperature, TS (K) as: 

( )( 610*2730023.0501.2 −−= STλ )  (16) 

  To effectively select reasonable cold and hot anchor pixels, the user must be 

skillful and understand the principles associated with the energy balance. Often, users of 

the METRIC program will not have sufficient background in radiation physics, and 

aerodynamic principles; and therefore, have difficulty in pixel selection and are often 

unsure of the accuracy of results. Methods to make the calibration process more 

automatic and built into METRIC would be advantageous and are discussed latter in 

chapter 9.  

 

3.2. METRIC Calibration Strategy Using ETr 

Uncertainties in ET estimates derived using the surface energy balance equations 

can and do exist from error and bias inherent in the calculation of the various components 

of the energy balance. These biases can include error due to atmospheric correction, 

albedo calculation, calculation of Rn, surface temperature, vertical air temperature 

gradient (dT), the soil heat flux, aerodynamic resistance and associated buoyancy 

impacts, wind speed field, and extrapolation from instantaneous ET to daily and longer 

periods (Allen et al, 2006 and 2007a). Many of the biases inherent in the estimation of the 

various components of the energy balance equation (Rn, G, and H etc.) are removed from 

the ET estimates, via the METRIC internal calibration using calculated hourly reference 

ET (ETr) (Allen et al, 2006, 2007a).  
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Once the instantaneous ET at the time of the satellite over pass is determined 

using equation 15, METRIC calculates the reference ET fraction using ETr and weather 

data by: 

r

inst

ET
ET

ETrF =  (17) 

Where ETrF is the reference ET fraction, ETinst is the instantaneous ET calculated using 

equation 15, and ETr is the reference ET calculated using hourly weather data collected 

within the study area and the ASCE Standardized Penman Monteith equation (EWRI-

ASCE, 2002). The ETrF is calculated for each pixel within the image, and is the same as 

the traditional crop coefficient, Kc. The use of ETr in the METRIC internal calibration 

process provides congruency with the traditional crop coefficient based ETr methods 

(Allen et al., 2006). While each pixel within a given image has an individual value of 

ETinst, the ETr used in the calibration process has the same value for each pixel. With the 

use of hourly weather data and therefore ETr, the construction of 24 hour, monthly, and 

seasonal ET maps are constructed.   

3.3. Testing of METRIC 

METRIC has been tested throughout much of the western United States, with 

operational applications in southern Idaho, southern California, and New Mexico. 

Currently METRIC processing is underway in both Nebraska and Colorado. METRIC 

has been applied by universities, state, federal, and private entities. Since 2000, the 

department of Idaho Water Resources has utilized METRIC derived ET maps to assess 

water rights compliance, transfers, and allocation (Morse et al., 2004). Recently the Idaho 

Department of Water Resources ET mapping program using METRIC, was recognized as 

one of the Top 50 innovations in American government for 2007 by the Ash Institute for 

Democratic Governance and Innovation (Rocchio, 2007). The institute is part of Harvard 

University’s Kennedy School of Government. 

Comparisons with METRIC ET estimates with ET measurements from precision 

weighing lysimeters has been carried out with data collected by Dr. James L. Wright of 

the USDA-ARS near Kimberly, Idaho as well as lysimeter data collected by Dr. R.W. 
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Hill of Utah State University, within the Bear River Basin at Montpelier, Idaho. Details 

of the lysimeter comparisons along with the discussion of Landsat image pixel selection 

and associated scaling considerations can be found in Allen et al., (2007b). Seasonal 

differences between METRIC and the precision weighing lysimeters was 4% for 1985 

Bear River Basin data and less than 1% for a sugar beet crop for 1989 Kimberly data 

(Allen et al., 2007b). While good agreement with a handful of lysimeter observations 

does not guarantee exact spatial ET calculation, these comparisons coupled with the 

extensive operational applications that tend to produce ‘crop coefficient curves’ that 

correspond relatively closely with those made by independent, ground based processes 

(Allen et al., 2007b) such as with the USBR Agrimet program and a state wide 

independent study by Allen and Robison (2007) (see Appendix A), do provide strong 

confidence in ET estimates, provided proper model calibration for each image.  

3.4. Crop Coefficients from short wave satellite data 

Relationships between crop coefficients and remotely sensed vegetation indices 

within agricultural areas have been well documented beginning with Neale et al., (1989), 

and Choudhury et al., (1994). Vegetation indices are dimensionless quantities that 

indicate the relative abundance of non-stressed green vegetation. Vegetation indices have 

been used to analyze the percentage of green cover, leaf area index, and chlorophyll 

content (Jensen, 2005). When compared to remote sensing based ETrF measurements 

throughout the growing season, a relationship becomes apparent (Figure 3.4-1). 
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Figure 3.4-1 Comparison of remotely sensed average ETrF and average NDVI (computed 
at the surface) from ten randomly sampled Sugar Beet fields for 12 image dates 
throughout the growing season (Kc data from METRIC processing Tasumi, 2003, 
reprocessed for this study). 
 

The Normalized Difference Vegetation Index (NDVI) is one of the most common 

vegetation indices used in ET analyses (Neale et al. (1989), Choudhury et al. (1994), 

Hunsaker et al. (2003), Allen et al., (2003), (2007)). NDVI is based on the relationship 

between the near-infrared and red reflectances, which provides a measure of green 

healthy vegetation (Jensen, 2005). NDVI is calculated using remotely sensed satellite 

data as: 

rednir

rednirNDVI
ρρ
ρρ

+
−

=  (18) 

where ρnir and ρred are the reflectance values within the near-infrared and red 

wavelengths. As discussed previously, atmospheric scattering and absorption of radiation 

occurs due to atmospheric constituents such as dust particles and water vapor. Much of 

the impact of the atmosphere is reduced in the calculation of NDVI due to the division by 

ρnir and ρred. However, some differences in atmospheric attenuation between the two 
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bands can create a difference between the NDVI determined at the satellite (NDVIsatellite) 

and the NDVI that would be determined with full correction of atmospheric effects 

(NDVIsurface).  

 Another popular vegetation index used in ET analysis is the Soil Adjusted 

Vegetation Index (SAVI), which has displayed valuable characteristics for Kc 

determination in its ability to reduce impacts of soil wetness on the index when plant 

cover is low (Huete, 1988; Huete et al, 1992; Jayanthi et al, 2007). SAVI is calculated in 

a similar fashion as NDVI with the addition of a canopy background adjustment 

parameter following Huete (1988) as: 

( )
L

L
SAVI

rednir

rednir

++
−+

=
ρρ

ρρ)1(
 (19) 

where L is the canopy background adjustment parameter and ρnir and ρred are again the 

reflectance values within the near-infrared and red wavelengths. The typical value for L 

is 0.5, which was found by the originator of SAVI to minimize soil brightness variation 

(Huete, 1988). However, Tasumi et al., (2003), and Allen et al., (2007b) found L equal to 

0.1 to best reduce the impacts of soil wetness on variation in southern Idaho soils. It is 

important to note that this value is near zero at which point SAVI reverts to NDVI.  

 While many indices exist and various types have been used in comparisons with 

crop coefficients, the Normalized Difference Vegetation Index has exhibited the most 

desirable characteristics in Kc comparison due to its tendency to ‘saturate’ at about the 

same Leaf Area Index (LAI ≈ 3) as the Kc tends to saturate (Allen et al., in review). The 

vegetation indices LAI, NDVI, and SAVI all give an indicator of the amount of green 

biomass present in a given pixel. Past studies have shown that as crops develop the 

maximum Kc typically occurs when the amount of plant biomass reaches a certain point 

described by an LAI of 2.5 to 3 (Wright 1982). At this point any increase in total LAI and 

thus vegetation amount does not correspond to an increase in Kc. The same scenario 

occurs for the NDVI where the maximum NDVI of 0.85 to 0.9 occurs at roughly LAI ≈ 3 

even though plant biomass and actual LAI continues to increase.  
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 This ‘saturation’ in NDVI can be seen in Figure 3.4-2, where peak values of 

NDVI ≈ 0.8 to 0.9 are reached for nearly all occurrences of Kc ≈ 0.9 to 1.0, while the 

SAVI tends to avoid saturation when Kc first reaches 0.9 to 1.0, meaning that as a crop 

reaches its maximum Kc, SAVI continues to sense increases in vegetation biomass. This 

can be problematic when fitting linear relationships to determine the crop coefficients and 

therefore NDVIatsurface was used in this study.  Furthermore; work conducted by Allen et 

al (2007) showed that the use of the NDVIsatellite and the NDVIsurface in Kc functions, gave 

nearly the same results and accuracy when estimating average Kc values for seasonal ET 

determination.  

 

717 Potato fields within the Magic Valley for 
the year 2000 (June 3 to September 15)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

NDVI at surface

Kc
 (K

cb
 li

ne
)

717 Potato fie lds within the  M agic Valley 
for the  year 2000 (June 3 to September 15)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

SAVI at surface

K
c 

(K
cb

 li
ne

)

 
Figure 3.4-2 Comparison of NDVI and SAVI vegetation indices for determining crop 
coefficients (Kc data from METRIC processing Tasumi, 2003, reprocessed for this 
study). 

In recent years several studies have suggested that a linear relationship exists 

between crop coefficients and vegetation indices (Allen et al 2003; Hunsaker, 2003; 

Calera et al, 2005; Duchemin et al, 2005; Jayanthi et al, 2007; Tasumi et al, 2007). Any 

crop coefficient estimated from NDVI can take the form: 

bNDVIaKC += *  (20) 

where a and b are calibrated constants. Two major factors exist for the strong linear 

relationship. The first is the high correlation between the NDVI and LAI or fraction of 

ground covered by vegetation, which in turn is directly related to the ET (Neale et al, 

1989). As discussed above the NDVI also reaches its maximum value at roughly the 

 



 26

same time effective full cover is reached by a given crop. The point of effective full cover 

is often highly correlated with the peak value for relative ET represented by Kc (or ETrF). 

3.5. Basal Kc from vegetation index 

Tasumi et al, (2007) used a similar approach to estimate the ‘mean’ Kc, which 

includes the mean (average) effects of evaporation from bare soil. This method follows 

closely the single crop coefficient procedure discussed in the FAO 56. At any particular 

time however, the total crop coefficient can be greatly affected by the amount and 

frequency of evaporation occurring from wet exposed soil (Allen et al, 1998). Vegetation 

indices measure the amount of green biomass and can not be used to estimate variation in 

ET due to soil wetness (Tasumi, Allen, unpublished, 2007).  

Because vegetation indices are highly correlated with plant biomass and LAI, we 

would expect Kcb versus NDVI relationships to be even more linear than ‘mean’ Kc vs 

NDVI, simply due to the fact that the transpiration component of ET is generally 

proportional to the amount of vegetation present. In a plot such as that shown in Figure 

3.5-1, the triangular relationship between Kc (estimated from METRIC) and NDVI 

implies that a line representing Kcb (the basal Kc), should occur near the low side of the 

triangle. This line represents fields where the soil surface is dry but ET is occurring at the 

potential rate expected for the amount of vegetation present.  

 



 27

516 Sugar Beet fie lds in Path 40 for the  
year 2000 (June  3 to September 15)
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Figure 3.5-1 METRIC Kc (ETrF) versus NDVI showing separation of total Kc into the 
basal and evaporation components Kcb and Ke.  

Figure 3.5-1 above, shows how the use of the FAO 56 dual crop coefficient 

method provides a framework to construct the total Kc by obtaining the basal component 

from NDVI, and then adding the evaporation component Ke. Points within the diagram 

lying above the Kcb relationship are experiencing an additional amount of evaporation 

due to surface wetting and points below the relationship correspond to locations where 

plant stress may be present due to under watering or other stress inducing process, or 

these may represent some normal random errors in the METRIC process for estimating 

Kc.  
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4.0 METHODOLGY 
 

4.1. Basal crop coefficients from NDVI 

In order to examine the relationships between Kc and NDVI, image wide Kc 

values were sampled from Kc images generated using the energy balance based METRIC 

model (Tasumi, 2003 Lorite, 2005). Remote sensing energy balance models such as 

METRIC provide a unique opportunity to sample Kc from a large numbers of fields in the 

Kc vs NDVI analysis. In this study a total of 3,574 fields were sampled and utilized in the 

model development. METRIC has been tested throughout the arid regions of the Western 

United States (Tasumi et al, 2005, previously discussed in more detail in section 3.3), and 

produces high resolution Kc maps for which we have strong confidence provided the 

model is properly calibrated for each image. In lysimeter studies conducted using data 

collected from the USDA-ARS facility near Kimberly Idaho, Tasumi et al. (2005) found 

that the annual absolute difference between METRIC derived Kc and Lysimeter derived 

Kc averaged 0.05.   

The METRIC model also has the NDVI function built into it and provided the 

NDVI images for comparison.  METRIC produces NDVI and Kc images at a 30m by 

30m pixel resolution. This allows sufficient resolution to sample information from 

specific fields, based on crop classifications, to develop crop specific Kc NDVI 

relationships. The specific crops analyzed for the study area were; potatoes, corn, beans, 

sugar beets, alfalfa, winter grains, and spring grains. Table 4.1-1 shows the total number 

of fields sampled within the study area for each specific crop type.  

 

Table 4.1-1 Total number of fields sampled for each crop type within the Magic Valley 
during the year 2000. 

Crop # Fields Crop # Fields
Alfalfa 325 Spring Grain 546
Beans 432 Sugar Beets 516
Corn 474 Winter Grain 564

Potatoes 717  
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While crop specific NDVI and ETrF data will be utilized in the development of 

the Kc vs NDVI relationships, a general relationship for all crop types will also be 

established and tested to determine if it can be applied to all major crops in southern 

Idaho without the need for specific classification of crop type. The general form of the 

relationship between Kcb and NDVI takes the form: 

bNDVIaKcb += *  (21) 

where a and b are again calibration constants. While a and b are locally calibrated, the use 

of the basal crop coefficient which are more representative of actual plant characteristics 

and not climate, should allow for regional and multi-year application. Also because the 

relationship represents primarily the crop transpiration component of the total ET, the 

relationships should be similar between crop types, thus increasing the utility of a 

generalized relationship useful for all crop types. 

General crop Kcb from at-surface NDVI 

The calibration process for a general Kcb curve was completed by first plotting 

METRIC Kc versus NDVIatsurface for each crop type, using data collected from all sampled 

fields of that type in the study area and from image dates corresponding to the growing 

season of each crop type. The plots shown for each crop type in figure 4.1-1 shows the 

corresponding days of the growing season considered for each crop. Two specific points 

were then defined representing the amount of transpiration occurring from bare 

agricultural soil with little evaporation due to wet soil, and the upper point where peak 

ET corresponds to full effective crop cover, again with little evaporation occurring from 

wet soil.    

The first point in the Kcb NDVI relationship was for the bare soil condition of 

NDVIatsurface = 0.16 and Kcb = 0.1. The value of NDVIatsurface of 0.16 appears to be the 

average value for bare soil within the Magic Valley. The corresponding Kcb of 0.1 was 

chosen following Wright (1982), and Allen et al., (1998) where Kcb of 0.1 represents the 

Kc from a dry bare agricultural soil which has been periodically tilled. Early in the 
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growing season some diffusive evaporation occurs from bare agricultural soils from 

beneath the dry surface (Allen et al., 1998).  

The second point used in the development the linear relationship was selected in 

the vicinity of the NDVI representing achievement of full crop development. The 

selection of this point was conducted in such a way as to obtain a given percentage of 

total points lying below the Kcb line. This was done following past work carried out by 

Tasumi et al (unpublished) where 20% was selected for the percentage of fields that on 

average would be experiencing varying degrees of water shortage or normal, random 

error in METRIC estimated ET. The general (crop-type free) linear relationship (along 

with the crop specific ‘custom’ relationship discussed in the next section) plotted with 

each crop type can be seen for all crops considered in Figure 4.1-1. 

It is noted that the assumption of a general linear relationship between NDVI and 

Kcb was not always observed for all crops under consideration (Figure 4.1-1). Row crops 

tended to exhibit a more linear relationship than did broadcast crops such as alfalfa, 

winter grains, and spring grains. In both winter and spring grain crops deviation from the 

linear relationship was observed late in the growing season. The points encircled in black 

above the Kcb line, seen in Figure 4.1-1, represent the NDVI and Kc sampled from the 

grain fields in late July corresponding to the development of grain heads.   

Grain canopy reflectance is affected by the development grain heads. While grain 

continues to transpire (exhibiting fairly high ET) the development of heads and senescing 

leaves causes a decrease in near infrared reflectance (NIR) and an increase of red 

reflectance due to a decrease in chlorophyll absorption (Haboudane et al., 2004). This 

decrease in NIR and increase in red reflectance cause significant underestimation in 

vegetation indices such as LAI and NDVI. This can in part explain the fairly low NDVI 

seen with the corresponding high Kc for grain crops late in the year and associated 

deviation from the linear relationships presented.    
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474 Corn fields (3-Jun to 15-Sep)
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564 Winter Grain fields (8-Apr to 21-Jul) 
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Figure 4.1-1 Kcb versus NDVI for all crop types showing both General relationship as 
well as crop specific relationships. 
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Also encircled in Figure 4.1-1 is the region below the Kcb relationship for winter 

grain crops. These data points correspond to observations made in early April before the 

beginning of the irrigation season within the Magic Valley. Winter grain is planted late in 

the fall, often immerges before winter and then lies dormant throughout the winter 

months. Much of the scatter of low Kc points seen for the sampled winter grain fields 

could be due to plant stress on the crops following a dormant winter and prior the start of 

the irrigation season.  

  The general linear Kcb-NDVI function also had poor agreement with sampled 

alfalfa field data. Some hystereses in the Kcb-NDVI is observed with alfalfa, where data 

collected early in the year tends to lie on and below the Kcb line and data collected late in 

the season tended to lie above the Kcb line (partial gap apparent in center of sampled data 

for alfalfa in Figure 4.1-1). Part of the deviation from the other crop relationships can be 

attributed to the frequent cuttings of alfalfa which occur throughout the growing season 

coupled with the effect of moist soil conditions following the first cutting. These cuttings 

occur essentially at random throughout an image and cause scatter in the Kc versus NDVI 

plots. Also alfalfa is a perennial crop with typically high percentages of ground cover. As 

seen in Figure 4.1-1 the sampled alfalfa fields had the highest NDVI from early in the 

growing season of all crops examined. All of these characteristics specific to alfalfa lead 

to the largest deviation from the general linear Kcb-NDVI relationship. 

While some deviation from a linear Kcb-NDVI relationship was observed for 

some crops under consideration, the assumption was still used and tested, especially since 

the periods of deviation experienced for grain crops apply to a relatively short portion of 

the growing season (Tasumi et al., 2007). Most crops sampled in this analysis exhibit 

distinct linear relationships between Kcb and NDVI.  

Crop specific Kcb from NDVI 

In some cases where specific crop classification is known, the use of crop specific 

relationships would be advantageous. Relationships between Kcb and NDVI were also 

developed for crops that have characteristics significantly different from an average crop, 

such as the case of alfalfa where impacts of frequent cuttings can create significant 
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differences from an average agricultural crop. Crop specific relationships were 

constructed for Alfalfa, bean, corn, and potato crops. The calibration constants a and b 

used in equation 20 for each crop type as well as the constants obtained for the general 

crop are given in table 4.1-2. No error statistics were calculated for these linear 

relationships due to the influence of Ke embedded in the Kc samples.  

 
Table 4.1-2 Kcb versus NDVI calibration constants for the Magic Valley Path 40 year 
2000 

Crop a b
General 1.13 -0.08
Alfalfa 1.27 -0.22
Beans 1.32 -0.18
Corn 1.34 -0.22

Potatoes 1.19 -0.19  

Comparison of generated Kcb curves with curves in the literature show good 

agreement (Figure 4.1-2). In order to construct average Kcb curves for the Magic Valley 

NDVI was sampled for the year 2000 from a total of 3, 754 fields and the average NDVI 

determined for each crop type throughout the growing season. The 3,754 fields sampled 

for NDVI were the same fields used in the development of the linear relationships. As 

described previously detailed crop classification was previously performed for the year 

2000 making crop specific curve generation possible.  All generated Kcb curves are 

compared to Kcb curves presented by Allen and Robison (2007) in Appendix A. All 

curves developed by Allen and Robison (2007) were strictly ground based (using 

growing degree days) and have as there primary source, the Kcb curves described by 

Wright (1982) based on lysimeter measurements near Kimberly, Idaho. Curves were 

generated by Allen and Robison (2007) for multiple locations and years based on local 

weather data and were adjusted for use with the ASCE Standardized Penman-Monteith 

reference ET equation (original Kcb curves by Wright (1982) were based on the 1982 

Kimberly Penman Reference ET equation).  The good agreement found between NDVI 

based Kcb and literature values shows promise to the use of Kcb derived from simple 

linear relationships to NDVI.  
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Corn basal crop coefficient comparison in the Magic 
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Figure 4.1-2 Comparison of Kcb curve derived from regional average  NDVI for corn 
using the general crop relationship with Kcb developed by Allen Robison (2007) from 
standardized Kcb curves by Wright (1982) for the Hazelton area within the Magic Valley 
(custom crop specific Kcb curve for corn performed similarly (seen in Appendix A)) . 

 

4.2. FAO 56 dual crop coefficient method to add estimate of evaporation from 

soil 

Because NDVI and thus vegetation amount are most strongly correlated with 

transpiration, the major disadvantage in using NDVI to examine crop coefficients and 

therefore crop ET is the inability to quantify evaporation from the soil surface, and to 

detect plant stress due to water scarcity.  To obtain improved estimates of total Kc from 

NDVI, the FAO 56 dual crop coefficient method was employed to estimate the 

evaporation component (Ke) to be added to Kcb determined from NDVI. 

Water Balance of the Surface Evaporation Layer 

The addition of evaporation from the soil surface will provide means to estimate 

total consumptive use of water by quantifying to some extent the effects of soil and plant 

conditions on Ke, which NDVI cannot sense. An FAO 56 evaporation model was used to 
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determine the amount of evaporation from bare soil due to wetting events and is given 

by: 

max_max_ )( cewcbcre KfKKKK ≤−=  (22) 

where Kr is defined as the evaporation reduction coefficient, which varies depending on 

the amount of water in the surface soil layer still available for evaporation, Kc_max 

represents the maximum Kc possible following a wetting event, and few is the fraction of 

bare soil that has been wetted and is exposed to sunlight (Allen et al. 1998, 2005 ASCE). 

The maximum value of Kc for individual fields with in a large area following an 

irrigation event can range from 0.8 to as high as 1.1 for alfalfa reference ETr depending 

on the time of year, soil temperature, crop type, and crop conditions (Tasumi et al., 

2005). Wright (1981) recommends maximum values for ‘mean’ Kc ranging from 0.78 for 

potatoes to 1.0 for alfalfa when using alfalfa as the reference ETr. Wright (1981) data was 

developed using the 1982 Kimberly Penman reference ET equation which when 

converted for use with the ASCE standardized Penman-Monteith equation gives Kc_max as 

high as 1.03 for spring grain (Allen and Wright, 2002). The value of Kc_max used in the 

evaporation model will vary slightly depending on the time of year, and best judgment 

following Allen et al (1998). A minimum value for Kc_max will be set as Kcb + 0.05, which 

suggests that wet soil will always increase the Kcb by roughly 5% even when the crop is 

at full cover (Allen et al 2005). 

The fraction of bare soil that has been wetted (few) can be estimated (Allen et al., 

1998) as the minimum of the fraction of exposed soil (1-fc) and the fraction of total 

wetted soil (fw), where fc is the fraction of vegetation cover estimated from Kcb and given 

by: 
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−
=  (23) 

The height (h) of the vegetation can be estimated from a linear relationship 

between minimum and maximum plant heights and Kcb as: 
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max_
max
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K
K

hh =  (24) 

 where Kcb is obtained from equation 20, and maximum plant height is obtained from 

FAO 56 tables when the crop specific simulation is conducted. Estimated h is set equal to 

0.6 m for the ‘general crop’ simulation where specific crop type is unknown. Kc_min for 

bare soil conditions can be assumed to be approximately 0.15 for areas with occasional 

surface wetting and near 0 for areas where wetting events are infrequent, such as in desert 

areas (Allen et al. 2005). 

As the soil surface dries we would expect the rate of evaporation to decrease. This 

decrease is accounted for in the evaporation reduction coefficient Kr, which can be 

estimated following Allen et al. (1998) by: 

REWTEW
DTEW

K je
r −

−
= −1,  (25) 

for De,j-1 > REW. De,j-1 represents the cumulative depth of evaporation within the surface 

soil layer modeled that dries to near air dry levels and the subscript j-1 refers to the 

previous day in the water balance. TEW is the total evaporable water equal to the 

maximum amount of water that can be evaporated from the soil surface after complete 

wetting and REW is the readily evaporable water. REW differs from TEW in that the 

REW can be evaporated with out any reduction in Kr. It is only after the REW has been 

evaporated that the Kr begins to decrease. 
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Figure 4.2-1 Behavior of the soil evaporation reduction coefficient, Kr as water is 
evaporated from the evaporation layer (following Allen et al., 1998) 

The analysis of the evaporation reduction coefficient requires a soil water balance 

within the layer of soil where evaporation occurs. Because we are concerned here with 

the amount of evaporation occurring from the surface Ke, only the bare soil fraction will 

be modeled in this process, as the evaporation from soil surfaces covered by vegetation is 

assumed to be incorporated into the transpiration component Kcb. Allen et al (1998) 

suggest that the effective depth of a soil surface layer modeled be in the top 0.10 to 

0.15m of the soil with 0.10m corresponding to coarse soils and 0.15m for fine textured 

soil types. With the effective depth of surface soil (Ze) and soil properties the TEW can 

be determined by: 

eWPFC ZTEW )5.0(1000 θθ −=  (26) 

In estimating TEW, basic soil properties are needed for determining θFC, the soil 

moisture content at field capacity, and θWP, the soil moisture content at the wilting point 

of vegetation. Both θFC and θWP can be obtained from FAO 56 for a range of soil textures 

(Allen et al. 1998). 
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The soil water balance in the effective evaporation layer and for the exposed 

fraction of the soil surface is conducted on a daily basis and is given in Allen et al. (1998) 

by: 

ieie
ew

i

w

i
iiieie DPT

f
E

f
I

ROPDD ,,1,, )( +++−−−= −  (27) 

where the subscript j is in days and j-1 corresponds to the previous day, P is the amount 

of precipitation occurring on that day, I is the amount of irrigation, E is the total 

evaporation from the surface (E = Ke*ETr), T is the amount of transpiration and DP is the 

deep percolation through the soil layer. The surface runoff can be approximated using the 

USDA curve number procedure following Allen and Robinson (2006) but is typically so 

small in irrigated agricultural areas that it can be neglected. The fraction of the soil that is 

both exposed and wetted, few is determined following Allen et al (1998) as the minimum 

between the fraction of the soil that is wetted, fw, and the fraction of the soil that is 

exposed (1-fc) and given by: 

( wcew fff ,1min )−=  (28) 

In many situations the amount of transpiration (T) occurring from the surface 

evaporation layer can be neglected (Allen et al, 1998). This is not the case for annual 

crops whose maximum rooting depth is less than approximately 0.5m (Allen et al, 2005). 

Under these conditions T can have a significant effect on the water balance conducted 

within the evaporation layer. In this study the magnitude of T is calculated at a daily time 

step following Allen et al, (2005) as follows: 

rscbT ETKKKT =  (29) 

where KT is the portion of the basal ET that is extracted by the plant from the fraction of 

the soil surface that is both wetted and exposed (few). KT is calculated by comparing the 

available water in the evaporation layer to the available water in the root zone as: 
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Here TAW is the total available water within the plant root zone. TAW is calculated from 

soil properties and the crops rooting depth (Zr) by: 

rWPFC ZTAW )(1000 θθ −=  (31) 

Dr in equation 30 is the depletion of water within the plant root zone expressed as 

a depth of water. This depletion is discussed in further detail in the following section and 

presented in equation 35.  

Water Balance of the Root Zone 

Historical weather and precipitation data are widely available and were used to 

incorporate daily precipitation events over the study area. Irrigation wetting events are 

more complicated to quantify because they occur essentially randomly within the 

population of fields in an image. Due to the lack of knowledge regarding the timing and 

amount of irrigations for the large number of fields in an image a soil water balance is 

conducted and irrigations assumed to occur whenever the soil water content drops below 

the readily available water (RAW). The depth of water applied for each irrigation event 

will be based on soil properties as well as crop type throughout the study area. The RAW 

will be estimated based on crop type and soil properties by: 

( )rWPFC ZMADRAW )(1000 θθ −=  (32) 

where MAD is the maximum allowable depletion within the root zone expressed as a 

decimal and Zr is the root depth of the crop under consideration. Economics, soil, and 

water management are all considerations that determine irrigations and thus the 

percentage of the available water to the crop. For this reason the RAW is similar the term 

“management allowed deficit” following Keller and Bliesner (1990).  

 Within this context different crops within varying types of soil are managed to 

different irrigation schemes by adjustments made to the MAD. A typical value of 50% 
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was utilized for the general crop analysis, as this represents traditional irrigation 

schedules which apply irrigations to ensure the water level in the root zone is usually not 

sufficiently low as to induce plant stress. In the crop specific analysis the MAD was 

adjusted to best replicate actual irrigation practice of the region for soil water sensitive 

crops such as potatoes.    

Furthermore, as a crop grows the readily available water increases due to the 

expansion of the crop root zone. It is then necessary to include, within the water balance, 

consideration of a “growing” root. Several functions for simulating root depth (Borg and 

Grimes, 1986; Allen et al., 1998) and in this study a simple linear growth relationship 

based on the relative Kcb value is used following Allen et al., (1998): 

( )
min_max_

min_,
min_max_min_

cbcb

cbicb
rrrr KK

KK
ZZZZ

−

−
−+=  (33) 

This root depth is modeled such that it is always increasing and never exceeds the 

maximum value entered into the model. 

As a crop transpires and the soil water content within the root zone drops to a 

certain level, the crop has difficulty extracting additional water by its roots and begins to 

experience stress. The effects of this water stress on crop ET is described in the FAO 56 

dual crop coefficient method, by a reduction in the crop coefficient KC (Allen et al., 

1998). This reduction is achieved by determining a water stress coefficient, KS, and then 

multiplying the KC by KS. The reduction coefficient is calculated as: 

RAWTAW
DTAWK r

S −
−

=  (34) 

Where TAW and RAW, are as previously defined, and Dr is the soil water depletion 

within the root zone.  The root zone depletion is determined by conducting a daily water 

balance of the soil column, to the depth of the crop roots. The depletion at the end of each 

day is described by the water balance as: 

( ) iiCiiiirir DPETCRIROPDD ++−−−−= − ,1,,   (35) 
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Here the subscript i represents the daily time step with i-1 representing the previous day 

of the water balance, P the amount of precipitation, RO the runoff from the soil surface, I 

the irrigation which infiltrates the soil, CR the capillary rise from the ground water table 

below, ETC the ET from the given crop, and DP the amount of deep percolation through 

the root zone, all expressed in units of depth of water.  

Graphically, KS behaves in a similar fashion to the reduction coefficient for the surface 

water balance, Kr. As seen in figure 4.2-2, KS has a value of 1 for all depletion depths up 

to the RAW. This corresponds to no reduction in the total Kc as the crop has no difficulty 

extracting water from the root zone. It is only after the depletion exceeds the RAW that 

KS becomes less than one and therefore a reduction in Kc occurs.   
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 Figure 4.2-2 Behavior of the water stress reduction coefficient, Ks, as water is extracted 
from the root zone (following Allen et al., 1998). 

In order to track the depletion of water within the root zone equation 32 requires 

knowledge of both inputs into the soil by way of rainfall and irrigation events, as well as 

outputs from the soil through ET, deep percolation, and runoff. The effects of capillary 

rise for common soils within the Magic Valley are insignificant due to generally large 

depths to ground water and were neglected. Allen and Robinson (2007) used a curve 

number method to calculate runoff and found that for irrigated agricultural areas in 

southern Idaho its magnitude is small and therefore runoff was neglected in this study. 
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Deep percolation through the root zone, DP was calculated following Allen et al. (1998) 

by: 

( ) 1,, −−−+−= iriCiiii DETIROPDP  (36) 

 Here the amount of deep percolation is restricted to non negative values (greater than or 

equal to 0) and only occurs when the soil column is above field capacity.  

In order to initiate the soil water balance initial soil water depletion conditions are 

needed (Dr,i-1). With the large spatial scale used in this study, measurements of soil 

moisture content were not feasible. Because we are conducting the analysis on an entire 

irrigation season starting in early March we can assume that the initial depletion in most 

soils is small. The Magic Valley receives the majority of its annual precipitation 

throughout the winter months and so assuming a root zone depletion of zero to initiate the 

soil water balance is considered an accurate approximation. 

Irrigation simulations 

Because the timing and magnitude of irrigation events occur throughout the area 

of a Landsat image essentially at random, an irrigation scheme was simulated based on 

the soil water balance of the root zone. Due to the large scale of the area of interest it is 

more important to replicate the frequency of irrigations than the precise timing of all 

irrigation events.  

Irrigation events were simulated using information from the soil water balance of 

the root zone. In this scheme irrigations were assumed to occur when ever the root zone 

depletion reached the readily available water (Dr,i = RAW). The magnitude of each 

irrigation event was just large enough to refill the root zone (Ii = Dr,i-1, RAW). As a direct 

result, deep percolation through the root zone was infrequent. To reduce the need for 

irrigation season determination, a Kcb threshold was utilized to initiate irrigations. 

Irrigations were limited to times following development of Kcb above 0.25. This delayed 

the start of the irrigation period to when most farmers begin irrigating and seemed to 

provide for a reasonable irrigation season within the study area.  
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One difficulty in the implementation of simulated irrigations’ into a spatially 

distributed water balance model that is applied on a pixel basis is its tendency to predict 

varying irrigation schedules from pixel to pixel within a given image and from 

neighboring pixels within the same fields. This can be problematic and depict scenarios 

that are unrealistic when compared to actual agricultural practices. Various techniques 

can be employed to combat this problem such as the development of an average regional 

irrigation schedule based on crop type to be applied to all fields within an image with the 

same crop type. This however would require crop classification which can be both costly 

and time demanding.  

Other irrigation scheduling techniques may include developing average irrigation 

schedules for various soil classifications. The variation in seasonal NDVI may also be 

used as a method for grouping “likely” crop types into groups and average irrigation 

schedules developed. For the calibration of the water balance model developed in this 

study, average irrigation schedules were developed based on crop type and then used to 

examine the possibility of other methods where the crop classification would not be 

required. 

Sample fields locations 

In order to test the water balance model and irrigation simulations, ten random 

fields were sampled from each of the crop types under consideration and the effects of 

both 10-field average and individual field irrigation schedules examined. It was 

determined that ten fields selected throughout the entire study area would provide 

sufficient information and variation for the development of an average crop irrigation 

schedule representing the Magic Valley. Figure 4.2-3 shows the location of the ten 

randomly selected alfalfa fields used to develop irrigation schedules. Sampling was made 

possible with the use of a crop classification map by Tasumi et al, (2003) constructed for 

the Magic Valley for the year 2000 (Figure 4.2-4). The land classification map has the 

same 30 by 30 meter resolution of Landsat images.  
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Figure 4.2-3 Sampled alfalfa fields used in water balance model calibration. 

Fields were sampled randomly and care was taken to select pixels from fields 

with uniform crop classifications and well inside the field away from the field edges 

where thermal contamination can occur. As seen in Figure 4.2-4 some heterogeneity in 

classification exists within some fields due to difficulty distinguishing between similar 

crops. The crop classification was validated by Tasumi et al. (2003) using ground truth 

data acquired throughout the region during the 2000 growing season. In the year 2000 a 

significant amount of corn was grown in fields north of the Snake River. This 

corresponds to the high number of dairies in that area and the use of corn silage as feed in 

the dairy operations.   
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Figure 4.2-4 Crop classification created by Tasumi et al, 2003 for major agricultural 
crops of the Magic Valley. 

Cloud cover was also considered in the selection of field samples. Cloud cover 

can significantly reduce the accuracy associated with all satellite based measurements. 

Cloud cover masks generated for the original processing of the year 2000 Path 40 by 

Tasumi et al. (2003) and used to sample from fields where no cloud cover was present for 

any of the twelve Landsat image dates. A significant portion of the study area was cloud 

free for all image dates (Figure 4.2-5). 
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Figure 4.2-5 Cloud cover map of Magic Valley showing total number of image dates with 
cloud cover. 

Each of the randomly selected fields was then sampled for METRIC Kc along 

with the NDVI for each image date throughout the growing season. In order to conduct 

the water balance model at a daily time step, daily NDVI and Kc values were interpolated 

using a cubic spline (ERH, K.T. 1972 Soil Science 144:333-338). This follows closely 

the manual fitting of Kcb curves by Wright (1982), which better captures the daily 

variation in Kcb values when only image date values are available. Linear interpolation 

tends to miss some of the variation in Kcb and can underestimate true ET around the time 

of peak ET (Figure 4.2-6). 
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Comparison of splined versus linearly interpolated Kcb 

for Beans in the Magic Valley for the year 2000 
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Figure 4.2-6 Comparison of splined versus linear interpolated Kcb for average Bean crop 
in the Magic Valley for year 2000 ('custom' Kcb versus NDVI). 

 

Water Balance Model Inputs 

Inputs needed for the water balance model were daily ETr, interpolated daily 

NDVI, and daily precipitation. The model was coded in spreadsheet format for this 

preliminary application and simulations made from the first day of March until the last 

day of October. ETr was calculated as previously described using the ASCE Standardized 

Penman Monteith equation and hourly weather data collected near Kimberly Idaho. Daily 

METRIC Kc values are also used as inputs into the model for comparative analysis of 

model performance. 

With all data input into the water balance model, irrigations were simulated and 

seasonal crop coefficient curves generated. Figure 4.2-7 shows the output of the soil 

water balance and simulated irrigation events. This simulation was conducted using the 

general crop Kcb versus NDVI relationship as well as the averaged crop characteristics 

(eg. root depth, max height etc.) over all crop types. Here we note that 15 irrigations were 

simulated for the averaged Sugar Beet field condition which is typical of irrigations in the 

Magic Valley using center pivots. 
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 4.2-7 Simulated irrigation for average Sugar Beet field using average NDVI from 
ten fields 

Combining Ke from simulated irrigations, precipitation, and Kcb from NDVI the 

water balance model provides the daily values of Kc throughout the irrigation season 

(Figure4.2-8). Spikes in the Kcb + Ke curve represent the addition of Ke due to the wetting 

of the soil surface as a result of simulated irrigations or measured precipitation events. 

Overlaying the Kcb + Ke curve with instantaneous observations of Kc from METRIC on 

image dates provides for a good visual check of water balance model compliance.  
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 4.2-8 Seasonal Kcb + Ke curve for average Sugar Beet field constructed using FAO 
56 dual crop coefficient approach with simulated Irrigation events 

 

4.3. Parameter Development 

In the calibration and analysis of the water balance model described above, two 

main components were analyzed; (1) the accuracy associated with the use of general crop 

characteristics and Kcb-NDVI relationships and thus a crop classification free approach, 

and (2) sensitivity and associated accuracy for simulated irrigation events. Two important 

parameters used in any water balance of a crop root zone are the properties and 

characteristics of the soil and crops to be analyzed.  

Soil Properties 

The total amount of water available for crop use in any soil type is directly 

dependent on the combined effect of the available water holding capacity of the soil and 

the area within the soil occupied by the plants roots. Soil properties such as water holding 

capacity are therefore vital for accurate water balance model performance.  

 



 50

The majority of the agricultural areas within the Magic Valley are underlain by 

Portneuf Silt Loam. Much of the lysimeter work carried out by Dr J. L. Wright (USDA) 

was conducted in fields of Portneuf Silt Loam. Table 4.3-1 gives al soil property values 

used for this study. The total evaporable water (TEW) was determined using a depth of 

the evaporation surface layer, Ze of 0.1m.  These soil properties have been calibrated for 

the study area during previous ET studies carried out by the University of Idaho (Allen 

personal communication).  

 

Table 4.3-1 Soil properties used in Kcb + Ke water balance model, calibrated for the 
Magic Valley during previous ET studies (Allen Personal communication). 

θFC θWP θFC-θWP θFC-0.5θWP TEW REW
(mm/mm) (mm/mm) (mm/mm) (mm/mm) (mm) (mm)

0.3 0.14 0.16 0.23 23 8  

 

Crop Characteristics 

The extent of a crops rooting depth plays a large role in the amount of water 

within the soil column available for plant use. As described above the root depth used in 

the water balance model depends on the development of the crop under consideration. A 

linear relationship between the crop seasonal variations and the maximum and minimum 

height and rooting depth were implemented. The values of maximum height as well as 

the minimum and maximum root depth were taken from a combination of Allen et al 

(1998), Keller and Bliesner (1990), and personal communication with local experts 

(Allen personal communication). Table 4.3-2 gives both the crop specific characteristics 

used in the crop classification based approach as well as the general crop characteristics 

used in the classification free approach.  
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Table 4.3-2 Crop characteristics used for both the crop specific and general crop 
simulations. 

Crop Type Max Height (m) Max Rz (m) Min Rz (m)
Alfalfa 0.7 2.0 0.25
Beans 0.4 0.9 0.10
Corn 2.0 1.7 0.25

Potatoes 0.6 0.6 0.10
Spring Grain 1.0 1.5 0.10
Sugar Beets 0.6 1.2 0.10
Winter Grain 1.0 1.8 0.25

General 0.6 1.0 0.25
**Note: Values obtained from combination of FAO 56 and Keller Bliesner (1990)  

The selection of the general crop characteristics which would best reflect the 

rooting characteristics of any given crop within the Magic valley was carried out by first 

reviewing the arithmetic average of the readily available table values for maximum 

height, minimum rooting depth and maximum rooting depth (calculated averages: hmax 

0.9 m, minimum Rz 0.2 m, and maximum Rz 1.4 m). The general parameters were then 

adjusted so that the extreme cases (corn maximum height of 2 m and alfalfa with 

maximum rooting depth of 2 m) did not unrealistically influence the resulting irrigation 

simulations for the remaining crop types (Allen personal communication).  

The duration of the irrigation season for any crop can have a large effect on the 

total estimated ET occurring for a given seasonal time period. In an attempt to create a 

model requiring the least amount of user definition, a Kcb threshold was used to initiate 

and end the watering season for each crop. This threshold was set at a Kcb of 0.25 and 

performed well for the simulation of most crops under consideration. Typically the 

irrigation season within the Magic Valley does not begin until mid April to early May. 

However, crop type plays a large role in irrigation season timing and therefore the 

threshold was established to replicate the beginning of irrigations for each crop under 

consideration. This provides an accurate assessment for spatial distribution of field 

planting and the different timing of crop development. A similar procedure was 

employed by Allen and Robison (2007).   

When using the general crop characteristics (height, root depth, etc.) alfalfa field 

simulations continually yielded unrealistic numbers of predicted irrigations especially 
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early in the growing season. This was attributed to the high NDVI and thus Kcb for fields 

early in the analysis period of March 1 to October 31. With the high Kcb, irrigations were 

predicted as early as the first week of March. For the crop classification based water 

balance model approach, the maximum allowable depletion was adjusted to allow for 

more depletion of water within the root zone, and therefore reduce the number of 

predicted irrigations.  
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5.0 Kcb + Ke WATER BALANCE MODEL WITH CROP 

CLASSIFICATION 

5.1. Statistical Analysis 

Validation of the Kcb + Ke water balance model output was performed in 

comparison with ET estimates made from METRIC. METRIC has been applied 

throughout the western United States and extensively in southern Idaho (Allen et al., 

2007b). While estimates from METRIC are well established their use in the validation of 

other ET estimation methods requires additional consideration in using common 

comparison statistics. This section defines the statistics used in the validation process and 

discusses additional steps taken to compare results to METRIC estimates as though 

METRIC is actual measured ET.  

As an indicator of seasonal accuracy the simple ratio of seasonal ET determined 

via the water balance model to the seasonal ET from METRIC is computed as follows: 

METRIC

KeKcb

ET
ET

ratioSeasonal +=_  (37) 

Where ETKcb+Ke is the seasonal ET (mm) estimated using the Kcb + Ke water 

balance approach, and ETMETRIC is the seasonal ET (mm) calculated using METRIC. It is 

noted here that seasonal estimates and measurements are for March 1 to October 31, 

2000.  

Remaining comparisons were made using the average daily ET (mm/day) 

estimated using the water balance model described and average daily ET (mm/day) 

observed by METRIC. The average daily ET was computed by summing the daily 

estimated ET over the Landsat image sub-period and then dividing the total ET by the 

number of days represented by each image sub-period (Table 5.1-1). This provided a total 

of twelve observations for each water balance model simulation. 
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Table 5.1-1 Time periods corresponding to Landsat satellite overpass for March 1, to 
October 31, 2000. 

Image Date Image sub-period # days in period
3/15/00 3/1 to 3/28 27
4/8/00 3/29 to 4/21 24
5/2/00 4/22 to 5/19 28
6/3/00 5/20 to 6/12 24
6/19/00 6/13 to 6/28 16
7/5/00 6/29 to 7/14 16
7/21/00 7/15 to 8/3 20
8/14/00 8/4 to 8/19 16
8/22/00 8/20 to 8/31 12
9/7/00 9/1 to 9/12 12
9/15/00 9/13 to 10/2 20
10/17/00 10/3 to 10/31 29  

 The standard deviation for both the model predicted variable and observed 

(METRIC) variable were calculated as: 
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Where Xi is the predicted (model) or observed (METRIC) ET estimate and Xave is the 

average predicted or observed ET estimate.  

The efficiency of the model was analyzed by calculating the model efficiency (E) 

as: 
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Where P represents the ET predicted by the water balance model and O represents the ET 

observed by METRIC. The model efficiency is a dimensionless quantity and gives a 

measure of the performance of the model, with a value of 1 representing excellent model 

efficiency. 

The root mean square difference (RMSD) was calculated by: 
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The RMSD is used here in place of the RMSE to consider the use of METRIC (O) values 

as a measure for water balance model accuracy but not as an absolute truth.  

The mean absolute difference (MADiff) was also use in place of the mean absolute 

error and was calculated by: 
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Typically the mean absolute difference is abbreviated as the MAD, however in this study 

the subscript is included to differentiate it from the maximum allowable depletion, MAD 

used in other portions of this study. The units for the MADiff are mm/day. The mean 

absolute percentage difference (MAPDiff) was calculated by: 
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The mean bias error, which indicates the average difference between the predicted 

and the observed values (mm/day), was calculated as: 

aveave OPMBE −=  (43) 

The final statistic analyzed was the coefficient of determination, r2, which gives a 

measure of correspondence between the predicted and observed values, and is calculated 

by: 
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5.2. Ten Field Simulations for each Crop under Consideration 

The performance of the water balance model was first tested by comparing ET 

estimates using averaged crop characteristics (over all crops) for each crop under 

consideration. The use of specific crop characteristics provided an indicator of how well 

the Kcb + Ke approach can replicate observed METRIC ET. The overall results of 

simulations using the average NDVI over the ten fields for each crop is presented first to 

show the applicability of the method for each crop type. A separate analysis of all 

estimates made from the ten sampled fields will then be made to analyze the accuracy 

associated with an individual field sampled at random from a Landsat image.  

Table 5.2-1 summarizes the results of simulations on the average field for each 

crop tested. All comparisons are, as stated in section 5.1, between the model predicted ET 

estimations with the observed METRIC ET. Simulations on corn and potatoes performed 

well seasonally with seasonal ratios near 1.00. Alfalfa simulations yielded the highest 

over estimation error (approximately 2%) relative to observed ET and the simulation 

conducted for beans gave the most under estimation (approximately 9%) for seasonal ET.  

Alfalfa also had the lowest model standard deviation of 1.7 mm/day as well as the lowest 

mean bias error of -0.01 mm/day. It is noted here that the negative MBE for alfalfa 

simulations would indicate an underestimation in ET estimates, however in this case the 

seasonal ratio was greater than one. The seasonal ratio is based upon the summation of 

daily ET estimates for each model for March 1, to October 31, while the MBE is 

calculated from average daily ET estimates over each of the image sub-periods (image 

sub periods span March 1 to October 31, but range in duration from 12 days up to 29 

days). In this case the negative MBE is small but caused by using the average daily ET in 

place of actual daily ET estimates. Therefore, MBE gives equal weight to each sub-

period (equal weight of daily average ET estimates for early in the year when ET is low 

as compared to later in the year when ET rates are high) while the ratio of seasonal ET 

gives larger weight to periods of high ET. Also it is noted that the ‘Stdev model’ 
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represents the standard deviation of the model ET estimates and describes the variation in 

estimated Kc over time and among fields.  

 

Table 5.2-1 Summary of simulations of each crop type using specific crop rooting 
characteristics, custom Kcb versus NDVI relationship and the average NDVI over ten 
sampled fields to define the average field condition . 

n=12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 1.02 1.70 0.88 0.62 0.44 9.7 -0.01 0.88
Beans 0.92 2.69 0.92 0.74 0.51 19.1 -0.22 0.93
Corn 1.00 2.95 0.99 0.30 0.25 6.3 -0.03 0.99

Potatoes 0.97 3.16 0.83 1.13 0.64 15.1 -0.03 0.88
Spring Grain 0.96 2.90 0.97 0.53 0.45 12.1 -0.23 0.98
Sugar Beets 0.96 2.79 0.96 0.55 0.41 8.9 -0.13 0.97
Winter Grain 0.95 2.94 0.91 1.01 0.77 19.7 -0.28 0.92

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-period from the Kcb + Ke
water balance model (predicted) and METRIC (observed) for March 1, 2000 to October 31, 2000  

 

Alfalfa 

Alfalfa is a major crop grown throughout the western United States. Alfalfa is 

characterized by frequent cuttings, usually three to four, during the course of the growing 

season. Alfalfa provides a unique test of any ET estimation model in that the reference 

ET is calculated with Alfalfa as the reference crop.  

The average NDVI from the ten sampled alfalfa fields can be seen in Figure 5.2-1. 

Of the ten fields sampled we see that the average number of cuttings of the sampled fields 

was four during the 2000 irrigation season. Individual water balance models were 

conducted for each of the ten crops as well as simulations for the average alfalfa crop. 

The average crop simulation was carried out using the average NDVI of the ten sampled 

crops (Figure 5.2-1). 
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Average NDVI and Kc from ten alfalfa fields for 
Path 40 year 2000
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Figure 5.2-1 Average NDVI and METRIC Kc from ten randomly sampled alfalfa fields 

The splined NDVI values of Figure 5.2-1 show the effect of frequent cuttings on 

NDVI, but the frequency of satellite images limits the ability to track the actual variation 

in NDVI throughout the growing season. For example from the satellite information we 

know that the alfalfa crops were cut at some time between the May 2 and June 6 image 

dates. However the precise date of the cutting remains unknown. This can create some 

error in calculated Kcb and thus the water balance models estimate of ET. A more precise 

daily Kcb curve developed for the study area by Allen and Robison (2000) can be seen in 

Figure 5.2-2 along with the Kcb computed from remotely sensed NDVI. As shown by the 

Allen Robison curve, the alfalfa Kcb curve increases to full cover at which time a distinct 

plateau is reached. At the time of cutting an immediate drop in vegetation and therefore 

Kcb occurs.   
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Alfalfa Kcb curves for the Magic Valley in 2000
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Figure 5.2-2 Comparison of Kcb curves developed from satellite NDVI to the Kcb curve 
generated by Allen and Robison (2007) using the Wright (1982) Kcb procedure for the 
Hazelton area within the Magic Valley 

This difference between the actual daily behavior in Kcb and the Kcb estimated 

from remote sensing data could cause some of the error found in ET estimates from the 

water balance model. This can also be problematic when performing the water balance 

model to large areas due to the randomness in the timing of cuttings throughout satellite 

images relative to image dates. 

The specific crop characteristics of alfalfa used in this set of simulations were a 

minimum and maximum root depth of 0.25 and 2.0 meters respectively. The maximum 

crop height of 0.7 meters was also used. With these crop specific characteristics and the 

Kcb-NDVI relationship custom fitted for alfalfa, the water balance model predicted 6 

irrigation simulations for the average alfalfa field. Figure 5.2-3 shows the water balance 

of the root zone and accompanying simulated irrigation events. It is noted that the y-axis 

is the depth of depletion of water within the alfalfa crop root zone. The total number of 

irrigations simulated for alfalfa using the water balance model is consistent with 

agricultural practices in Southern Idaho.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-3 Soil water balance of the root zone and corresponding simulated irrigations 
using rooting characteristics specific to alfalfa. 
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Figure 5.2-4 Kcb + Ke curve generated using water balance model for alfalfa with crop 
specific characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running 
average for visual curve comparison).  
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With the simulated irrigation events along with known precipitation, the seasonal 

Kcb + Ke curve can be constructed (Figure 5.2-4). The spikes observed in the Kcb + Ke 

curve represent evaporation from the soil surface immediately following wetting events. 

Also included in the figure is the Kc estimated from METRIC both on the image date as 

well as daily values estimated using the cubic spline of image date values. The Kcb + 

smoothed Ke curve in Figure 5.2-4 is constructed by using a ten day running average on 

the daily Ke values before being added to the Kcb. This is done solely for visual 

comparison of the water balance model results with METRIC Kc curves. In the 

comparison of METRIC values with the daily values estimated by the water balance 

model for alfalfa, a relatively good agreement is observed.  

The resulting seasonal ET estimation for alfalfa gave the highest overestimation 

of METRIC observed ET with a seasonal ratio of 1.02. The over estimation could be 

attributed to the frequency of remote sensing images and the consequent error associated 

with the inability to track the multiple cuttings precisely. Also as discussed in the 

parameter development section above, the water balance model as developed tends to 

predict more irrigation events for alfalfa crops due to the high vegetation cover early in 

the year. This was in part compensated for with the increased amount of allowable water 

depletion within the alfalfa root zone. 

Beans 

Beans are another common agricultural crop grown in southern Idaho. While 

many varieties exist, they all exhibit similar irrigation and agronomic characteristics. The 

average NDVI from ten randomly sampled fields can be seen in Figure 5.2-5. Beans 

typically grow to a height of 0.4 meters and have a shallow starting rooting depth of 0.1 

meters up to approximately 0.9 meters. For beans the Kcb-NDVI relationship custom 

fitted for beans was utilized.  
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Average NDVI from ten Bean fields for
Path 40 year 2000
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Figure 5.2-5 Average NDVI from ten bean fields along with the average METRIC Kc 
sampled from the same ten fields. 

Conducting the soil water balance model on the average bean field yielded a total 

of 10 simulated irrigations (Figure 5.2-6). Also seen in Figure 5.2-6 is the short duration 

of the irrigation season for the bean crops. This follows the growth pattern seen in the 

seasonal variation of bean field NDVI. It is also noted that a distinct spike in the depth of 

allowable depletion occurs later in the year (early September) which corresponds to the 

water balance models increase in the MAD after bean crop harvest. This increase in 

MAD occurs to stop irrigation simulations by allowing a deficit, which in most cases 

lasted until the end of the study period with no additional irrigation simulations. 

The long time periods of bare soil conditions would suggest that the use of a 

water balance model and accompanying Ke estimates from bare soil would be beneficial. 

However, the largest deviation from METRIC results was found for beans with an 

approximate 8% under estimation. The bean simulations also had a mean absolute 

percentage difference of 19.1% (only exceeded by Winter Wheat with MAPDiff of 

19.7%). Bean simulations had a RMSD of 0.74 mm/day and a model efficiency of 0.92. 

However a visual average of Kcb + Ke in Figure 5.2-7 compares relatively closely with 

the average Kc from METRIC over the entire growing season.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-6 Soil water balance of the root zone for Beans using average field conditions. 

Kcb + Ke using the average NDVIsurf of ten fields
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Figure 5.2-7 Kcb + Ke curve for Beans constructed using custom (bean specific) Kcb-
NDVI relationship from average NDVI of ten fields and simulated irrigations (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 
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Corn  

Several varieties of corn crops are grown within the Magic Valley from silage 

corn used for dairies, field corn, to sweet corn for human consumption. Figure 5.2-8 

shows the average NDVI from ten randomly sampled corn fields throughout the Magic 

Valley. No distinction between corn types was attempted. While corn can grow to heights 

above two meters the maximum height used in this analysis was 2 meters. The root depth 

used in the corn simulation ranged from 0.25 up to 1.7 meters. Also the custom Kcb-

NDVI relationship developed specifically for corn was used in the following simulations.    

Average NDVI from ten Corn fields for
Path 40 year 2000
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Figure 5.2-8 Average NDVI and observed METRIC Kc for ten randomly sampled Corn 
fields within the Magic Valley. 

 

Simulations for the ten randomly sampled corn fields predicted an average of 7 

irrigation events throughout the growing season. Seasonal ET estimates from corn 

compared very well to METRIC with a seasonal ration of 1.00. The corn model 

simulation also had the highest model efficiency of 0.99. Figure 5.2-10 shows good 
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agreement between the water balance model Kcb + Ke curve and image date METRIC Kc. 

Early in the growing season ‘spikes’ in Kcb + Ke due to precipitation correspond to 

METRIC observations. During full crop development similar correspondence is 

observed. 

Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-9 Soil water balance and simulated irrigation events for average Corn field 
constructed using average NDVI from ten randomly sampled corn fields. 
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 5.2-10 Kcb + Ke curve for Corn constructed using custom (corn specific) Kcb-
NDVI relationship from the average NDVI of ten fields and simulated irrigations (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 

 

Potatoes 

Southern Idaho is known throughout the world for its high quality potato 

production. The seasonal variation in NDVI can be seen below in Figure 5.2-11. Crop 

specific characteristics used for maximum crop height, and root depth were 0.6 and 0.1 to 

0.6 meters respectively. The crop specific simulations for potatoes also utilized the Kcb-

NDVI relationship developed specifically for potatoes.  
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Average NDVI from ten Potato fields for
Path 40 year 2000
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Figure 5.2-11 Average NDVI and METRIC Kc from ten randomly sampled Potato fields. 

The 23 simulated irrigation events shown in Figure 5.2-12 may appear high but is 

typical of center pivot irrigation systems. It is not uncommon for potatoes in southern 

Idaho, irrigated by center pivots, to receive as many as 40 low volume irrigations (Dr. 

Brad King USDA-ARS, personal communication). This could in part suggest under 

estimation in seasonal ET from the water balance model, which was observed with 

approximately 3.4% under estimation.  

The model standard deviation of 3.16 mm/day was observed for the potato 

simulation along with the model efficiency of 0.83.  Potato simulation had a RMSD of 

1.13 mm/day. The under estimation of seasonal ET could suggest the need to begin 

irrigation simulation at a lower Kcb threshold for potatoes. It is also apparent from Figure 

5.2-12 that the first irrigation lags rapid root growth which again implies the need of 

earlier irrigation simulations. This can be seen in Figure 5.2-13 by the large 

underestimation of METRIC Kc around the June 3 image date corresponding to the 

period of rapid potato crop development. Most irrigators are most likely irrigating at this 

time of crop development which the water balance model fails to predict.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-12 Soil water balance of the root zone and corresponding simulated irrigations 
for Potatoes using crop specific crop characteristics. 
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Figure 5.2-13 Kcb + Ke curve for Potatoes generated using custom (potato specific) Kcb-
NDVI relationship from average NDVI of ten fields and simulated irrigations (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 
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Sugar Beets 

Sugar beets are another vital crop grown in Southern Idaho. Sugar Beets have 

similar characteristics as potatoes. The maximum plant height for sugar beets was set at 

0.6 meters and the maximum root depth reaching 1.2 meters. Much of the lysimeter based 

research carried out with the USDA-ARS near Kimberly and corresponding with 

METRIC was conducted with sugar beets as the crop of interest (Wright, Allen et al., 

2007b). Figure 5.2-14 shows the average NDVI of the ten sampled fields throughout the 

growing season. The general crop Kcb-NDVI relationship was used in sugar beet as it fit 

well to sugar beets in the development of the Kcb-NDVI relationships for each crop type.  

Average NDVI from ten Sugar Beet fields for
Path 40 year 2000
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Figure 5.2-14 Average NDVI and METRIC Kc from ten randomly sampled Sugar Beet 
fields. 

Sugar Beet simulations followed closely the results for potatoes. The overall 

seasonal ET ratio compared to METRIC was approximately 0.96. The mean bias error for 

the sugar beet simulation was only -0.13 mm/day and the RMSD was 0.58 mm/day.  

Comparison of the seasonal Kcb + Ke curve with the image date observations 

made with METRIC show relatively good agreement. Under estimation by the water 

model appears to be affected more by the timing of irrigation simulations than by the 
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frequency. Early season peaks in the Kcb + Ke curve confirm METRIC observations when 

bare soil conditions exist. 

Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-15 Soil water balance of the root zone with corresponding simulated 
irrigations. 
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 5.2-16 Kcb + Ke curve generated using water balance model for Sugar Beets with 
crop specific rooting characteristics and the general Kcb-NDVI relationship (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 

 

Spring Grain 

Grain crops throughout the west are planted both in the spring as well as in the 

fall. Separate analysis is performed for grain crops planted for each of these time periods. 

Grains include the crops of barley, wheat, and no attempt was made to distinguish 

sampled fields between grain varieties. The average NDVI from ten randomly sampled 

fields is displayed in Figure 5.2-17. Spring grain crops typically grow to a maximum 

height of 1.0 meter and have rooting depths up to 1.5 meters. Spring grain simulations 

also used the Kcb-NDVI relationship developed for all crops within the Magic Valley. 
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Average NDVI from ten Spring Grain fields for
Path 40 year 2000
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Figure 5.2-17 Average NDVI and METRIC Kc from ten randomly sampled Spring Grain 
fields. 

Spring grain simulations provided under estimation of observed METRIC 

seasonal ET with a seasonal ratio of 0.96. The model for spring grain did have the second 

highest model efficiency of 0.97. The second lowest RMSD of 0.53 mm/day was also 

observed for the spring grain simulation.  

With a total of 7 simulated irrigations, the constructed Kcb + Ke curve compares 

the best with METRIC observations during the irrigation season. After the fields were 

harvested and irrigation ceased, differences between METRIC and the Kcb + Ke model 

become more pronounced.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 5.2-18 Soil water balance of the root zone with corresponding simulated 
irrigations. 
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Figure 5.2-19 Kcb + Ke curve for Spring Grain generated using water balance model with 
crop specific rooting characteristics and the general Kcb-NDVI relationship (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 
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Winter Grain 

Winter grain is planted in late fall and typically emerges before winter 

temperatures cause it to go dormant throughout the winter months. Winter grain also 

reaches a maximum height of 1 meter and maximum root depths of 1.8 meters, slightly 

deeper than for grain planted in the spring.  Figure 5.2-20 shows the seasonal variation in 

NDVI for the average of the ten fields sampled. Winter grain simulations also utilized the 

general Kcb-NDVI relationship fitted for all crops within the Magic Valley. 

Average NDVI from ten Winter Grain fields for
Path 40 year 2000
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Figure 5.2-20 Average NDVI and METRIC Kc from ten randomly sampled Winter Grain 
fields. 

The winter grain simulations performed similar to those for spring grain with a 

slightly larger deviation from METRIC with approximately 4.9% under estimation. 

Winter grain had a much higher RMSD than spring grain at 1.01 mm/day. The highest 

mean absolute difference of 0.77 mm/day was observed for winter grain simulations. 

Similar to spring grain, Kcb + Ke estimates deviate slightly from METRIC late in 

the season after irrigation simulations have ceased. The total of 8 simulated irrigations 

could be low and cause some of the under estimation in seasonal ET. Also, the first 
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simulated irrigation simulated is before the typical beginning of irrigations within the 

Magic Valley and can be attributed to the high Kcb detected early for winter grain.  

 

Soil water balance of the root zone using average NDVIsurf 
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Figure 5.2-21 Soil water balance of the root zone and corresponding simulated 
irrigations. 
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 5.2-22 Kcb + Ke curve for Winter Grain generated using water balance model with 
crop specific rooting characteristics and the general Kcb-NDVI relationship (Kcb + 
smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 

 

5.3. Accuracy of Individual Field Simulations 

The following discussion is made to analyze the performance of the water balance 

model when a single individual field, or pixel within a field, is considered with a custom 

crop specific Kcb-NDVI function and crop specific rooting depth and maximum plant 

height. Table 5.3-1 gives comparison results for all individual field simulations for each 

crop. With ten field simulations and twelve estimates (one for each image period) made 

for each field, a total of 120 ET estimates were available for comparison with METRIC 

observations.  
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Table 5.3-1 Summary of the accuracy of individual field simulations using specific crop 
characteristics and custom crop Kcb-NDVI curves (n = 120, 12 image sub-period 
estimates for 10 fields for each crop). 

n=120 Stdev model Model RMSD MADiff MAPDiff MBE 
Crop (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 1.9 0.80 0.93 0.69 15.1 -0.05 0.80
Beans 2.6 0.75 1.38 0.89 33.3 -0.19 0.76
Corn 3.0 0.93 0.80 0.55 13.6 -0.07 0.94

Potatoes 3.0 0.78 1.37 0.76 17.8 -0.16 0.80
Spring Grain 2.9 0.88 1.09 0.78 21.3 -0.29 0.88
Sugar Beets 2.7 0.82 1.16 0.63 13.5 -0.11 0.83
Winter Grain 2.8 0.85 1.25 0.98 25.0 -0.29 0.87

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-periods from the Kcb + Ke
water balance model (predicted) and METRIC (observed) for March 1, 2000 to October 31, 2000  

The analysis of all sampled fields for each crop type shows that simulations for 

individual corn fields would provide the best accuracy compared to METRIC 

observations. Figure 5.3-1 shows the comparison of the total 120 predicted ET estimates 

for corn to METRIC estimates which gave an r2 of 0.94. Interestingly corn ET data 

estimated for the June 19 image date (noted in Figure 5.3-1) had the highest differences 

between METRIC and water balance model results. This date in June corresponds to the 

period of rapid growth for corn crops and the beginning of simulated irrigation events 

within the water balance model. Much of the difference observed between ET estimates 

could be largely influenced by prediction of irrigation events and how well those events 

mirror the actual irrigations for those individual corn fields. The simulations for 

individual bean fields had the lowest r2 (0.76), and the highest mean absolute percentage 

difference of 33.3%. Beans also had the highest RMSD of 1.38 mm/day. 
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Corn average daily ET (mm) over the satellite
 image sub-period
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Figure 5.3-1 Comparison of predicted average daily ET to METRIC observed average 
daily ET for 10 individual Corn fields (n=120). 

 

5.4. Average Field Condition Simulation using 3,754 Sampled Fields 

This section presents the results of simulations on field conditions representing 

average crop conditions for the Magic Valley. The average field condition for each crop 

type was constructed by sampling image date NDVI values from a large number of fields 

for each crop type within the study area and taking the average NDVI of all fields to 

represent average conditions. This was carried out for all study crops. Simulations were 

then conducted using this average field and Kcb + Ke curves constructed. 

Table 5.4-1 displays the results for each crop simulation along with the total 

number of fields sampled for each crop analysis. Using average field conditions for each 

crop coupled with specific crop characteristics and custom Kcb vs NDVI relationships 

predicted ET similar to average observed METRIC ET from the same fields. METRIC 

estimates were calculated as the average of all individually sampled fields. 
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Water balance model predicted ET estimates were within 6% of METRIC for all 

crop types when compared over the entire growing season. Corn estimates gave the 

highest deviation from METRIC with 5.6% under estimation but had the highest r2 of 

0.97.  Sugar Beets had the smallest RMSD of 0.50 mm/day.  

 

Table 5.4-1 Average field condition (average crop defined by average NDVI over all 
sampled fields of that crop type) simulation using Ke from single irrigation simulation for 
average condition and crop specific characteristics. 

n = 12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop # fields Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 325 1.03 1.72 0.91 0.54 0.46 9.9 0.06 0.92
Beans 432 1.03 2.66 0.92 0.67 0.50 20.3 0.12 0.94
Corn 474 0.94 2.93 0.96 0.53 0.30 7.0 -0.18 0.97

Potatoes 717 0.99 2.98 0.90 0.84 0.51 13.7 0.07 0.93
Spring Grain 546 1.02 2.90 0.92 0.85 0.64 18.9 -0.05 0.92
Sugar Beets 516 1.00 2.61 0.96 0.50 0.34 7.5 -0.01 0.96
Winter Grain 564 1.02 2.90 0.89 1.05 0.78 21.1 -0.04 0.89

**Note: Average crop simulation is conducted using average field condition which is estimated form the average NDVI from all sampled fields
of that crop type for the entire growing season (1-Mar to 31-Oct). METRIC observations are the average ET of same fields for each crop type.  

 

5.5. Ke Simulation Sensitivity 

The amount of evaporation occurring over a given crop can play a large role in 

total ET, especially under bare soil conditions. When conducting a water balance model 

and associated irrigation simulations to single locations, the combined Kcb + Ke curve can 

be extremely ‘spiky’ and may not represent actual conditions due to uncertainty in actual 

dates for irrigation. Furthermore, when conducting simulations for individual pixels 

within remotely sensed images, pixels within the same field may have drastically 

different simulated irrigation schemes.  

One way to overcome this difference is to use an average Ke to be added to Kcb, 

for each crop type constructed from multiple irrigation simulations conducted for each 

crop under consideration. In this analysis the average Ke was generated for each crop by 

conducting ten field simulations and then averaging the Ke obtained from each irrigation 

simulation. This not only gives a more realistic Ke for each crop type but also has the 

effect of ‘smoothing’ spikes in the Kcb + Ke curves.  Figure 5.5-2 shows the resulting 
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‘smoothing’ of the Ke based on individual simulations such as shown in Figure 5.2-21. It 

is worth noting that Ke spikes from precipitation were not smoothed by the averaging, 

since precipitation was assumed to apply to each sampled field.  

Kcb + Ke for average Potato crop using Ke from
idividual irrigation simulation
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Figure 5.5-1 Kcb + Ke curve for an average Magic Valley Potato field using Ke derived 
from one individual irrigation simulation and specific crop characteristics. 
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Kcb + Ke for average Potato crop using average
Ke obtaind from ten indivdual field simulations
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Figure 5.5-2 Kcb + Ke curve for the average Potato field condition within the Magic 
Valley using Ke averaged from individual field irrigation simulations from ten fields, 
using specific crop characteristics. 

The effects of using the average Ke from ten field simulations for each crop type 

and the resulting comparison with METRIC observations can be seen in Table 5.5-1. 

Again corn produces the largest under estimate for seasonal ET with an under estimation 

of 5.8% compared to the 5.6% under estimation found for corn with Ke from individual 

simulations. It is also noted that using the average Ke for each average field simulation 

reduced the RMSD for all crops considered. The only exception was for the corn 

simulation where the RMSD of 0.50 increased to 0.53 mm/day, and sugar beets which 

increased slightly from 0.50 to 0.51 mm/day.  

This reduction in RMSD by using a Ke averaged for each crop can be attributed to 

the smoothed Ke which reduces daily variation in the overall Kcb + Ke curve.  The use of 

average Ke also increased model efficiency and decreased the mean absolute difference 

between model and observed METRIC ET in most cases. Overall the use of an average 

Ke obtained from individual simulations proves advantageous for simulations when crop 

classification is known.  
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Table 5.5-1 Average field condition simulation using specific crop characteristics for 
each crop and Ke averaged from individual simulations for ten fields for each crop type 
(average field condition is defined by averaging NDVI over all fields of each given crop). 

n = 12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop # fields Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 325 1.01 1.68 0.93 0.49 0.39 8.5 0.00 0.93
Beans 432 1.00 2.60 0.94 0.58 0.45 18.1 0.03 0.95
Corn 474 0.94 2.87 0.96 0.53 0.31 7.4 -0.21 0.97

Potatoes 717 0.99 2.90 0.90 0.84 0.47 12.5 0.02 0.92
Spring Grain 546 0.99 2.89 0.94 0.72 0.54 16.0 -0.12 0.94
Sugar Beets 516 0.99 2.59 0.96 0.51 0.35 7.8 -0.03 0.96
Winter Grain 564 1.00 2.89 0.92 0.89 0.69 18.6 -0.10 0.92

**Note: Average crop simulation is conducted using average field condition which is estimated form the average NDVI from all sampled 
fields of that crop type. METRIC observations are the average ET of all sampled fields for each crop type.  
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6.0 CROP CLASSIFICATION FREE Kcb + Ke WBM   

One of the major purposes of this study was to develop an ET estimation method 

from the short wave satellite data which does not depend on a crop classification of the 

area of interest. Detailed crop classification is both timely and expensive. The results of 

the water balance model were tested for simulations with and without crop classifications 

to assess any loss in accuracy due to a crop classification free approach.  

6.1. Ten Field Simulations for Each Crop under Consideration 

This section presents results of ten field simulations for each of the seven crops 

under consideration using the “classification free” general Kcb versus NDVI relationship. 

While a total of ten simulations were conducted for each crop type we will first present 

the results of the average field condition for each crop. The average field condition is 

characterized by performing the water balance model of a hypothetical field of the crop 

type under consideration (but using the ‘classification free’ Kcb-NDVI relationship), 

developed from the average NDVI values for each of the ten field observations per image 

date. This analysis gives a “pooled” set of observations, which can be used as an 

indicator, to examine the ability of the dual crop coefficient water balance model to 

replicate METRIC Kc and thus ET estimates for each of the studied crop types.   

Table 6.1-1 shows the results of all “average crop” simulations for the randomly 

sampled fields. The ratio of the predicted seasonal ET to the METRIC observed seasonal 

ET was highest for the alfalfa crops at 1.17. Alfalfa also exhibited the lowest model 

efficiency (E = 0.75) as well as the largest mean bias error. The water balance model for 

the remaining crops produced seasonal ET estimates within 5% of METRIC. The water 

balance model conducted on Alfalfa did have the lowest standard deviation of model 

estimates of 1.60 mm/day. Interestingly, the total seasonal percentage of ET 

corresponding to evaporation was approximately 17% for the average alfalfa simulation 

(using average NDVI over ten randomly sampled fields) and ranged from 13% for winter 

grain up to 31% for bean crops using general crop characteristics and general Kcb-NDVI 

relationships. This is discussed in more detail in section 6.4.  
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Table 6.1-1 Summary of average field condition simulation using the universal (crop 
coefficient free) Kcb-NDVI relationship for ten sampled fields for each of the crop types 
considered. 

n=12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 1.17 1.60 0.75 0.91 0.72 15.88 0.66 0.90
Beans 0.97 2.41 0.92 0.74 0.58 21.8 -0.12 0.93
Corn 1.04 2.79 0.98 0.46 0.40 9.9 0.09 0.98

Potatoes 0.98 2.89 0.92 0.76 0.44 10.4 -0.02 0.93
Spring Grain 0.98 2.90 0.96 0.56 0.44 12.1 -0.15 0.97
Sugar Beets 0.98 2.75 0.96 0.55 0.41 8.7 -0.07 0.96
Winter Grain 0.96 3.02 0.91 0.98 0.72 18.3 -0.24 0.92

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-period from the Kcb + Ke
water balance model (predicted) and METRIC (observed) for March 1, 2000 to October 31, 2000  

One possible cause of the over estimation of ET from alfalfa can be attributed to 

the high number of irrigation events estimated using the water balance model and rooting 

characteristics for the average crop type. Figure 6.1-1 shows the total 21 irrigations 

simulated for the average alfalfa field using the general crop characteristics used for the 

classification free approach (max height = 0.6, max rooting depth = 1m). This is similar 

to the number predicted for each of ten individual field simulations but significantly 

higher than the typical number of irrigations for alfalfa within the Magic Valley when 

surface irrigation is practiced. The 21 irrigations are more representative of center pivot 

systems which are common in the Magic Valley. 

Ordinarily, irrigation does not begin for alfalfa until mid April, whereas the model 

predicted irrigation as early as March 7. In this case delaying irrigations until April 15 

would have reduced the seasonal ET estimates for alfalfa by approximately 5 %.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 6.1-1 Soil water balance of the root zone for the average alfalfa field using general 
crop characteristics. 

The high frequency in simulated irrigation events for alfalfa creates an extremely 

“spiky” Kcb + Ke curve (Figure 6.1-2). With more irrigation, more water is available for 

evaporation and therefore predicted amounts increase. It was also observed that using the 

general crop characteristics coupled with the generic irrigation start/stop dates based on 

Kcb, (Kcb>0.25) produced irrigation seasons for alfalfa over the entire study period of 

March 1 to October 31. The NDVI based Kcb for alfalfa was always greater than the Kcb 

threshold of 0.25 used as the indicator of irrigation season. Alfalfa was one of the two 

crops (winter grain simulations also predicted early irrigations) where irrigation season 

initiation prediction inaccuracies occurred and was compensated using the crop specific 

analysis discussed previously in chapter 5.  
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Kcb + Ke using the average NDVIsurf of ten fields

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1-Mar 31-Mar 30-Apr 30-May 29-Jun 29-Jul 28-Aug 27-Sep 27-Oct

K
cb

 a
nd

 K
cb

 +
 K

e

Kcb curve Kcb+Ke curve
Splined METRIC Kc METRIC Kc
Kcb + smoothed Ke

Alfalfa

 
Figure 6.1-2 Kcb + Ke for average alfalfa field constructed using water balance model. 
METRIC Kc is overlaid for comparison (Kcb + smoothed Ke curve: Ke smoothed using 10 
day running average for visual curve comparison). 

 

Bean 

Bean simulations using general crop characteristics and therefore the 

classification free approach actually performed better than simulations using the specific 

height and rooting depth characteristic for beans. The overall ratio of seasonal ET to the 

seasonal ET observed by METRIC was 0.97. The RMSD for the bean simulation was 

0.74 mm/day. Examination of Figure 6.1-4 suggests reasonable agreement between 

seasonal Kcb + Ke curves and METRIC Kc. It is seen however that under estimation can 

in part be attributed to the low number of irrigations.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 6.1-3 Soil water balance of the root zone and corresponding simulated irrigations 
using general crop characteristics. 

 

Kcb + Ke using the average NDVIsurf of ten fields
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Figure 6.1-4 Kcb + Ke curve for Beans generated using water balance model with general 
crop characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running 
average for visual curve comparison). 
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Corn 

Corn simulations using the general crop characteristics gave a seasonal ET ratio 

of 1.04 when compared to METRIC observed seasonal ET. This contrasts simulations for 

corn using specific corn characteristics which produced only 0.02% seasonal deviation 

from METRIC. Figure 6.1-5 also shows that the simulated number of irrigations 

increased from 7 to 13 when using general crop characteristics as opposed to corn 

characteristics (Figure 6.1-5 and 6.1-6 can be compared with Figures 5.2-9 and 5.2-10). 

This increase in irrigations creates a larger average Ke and therefore total crop coefficient. 

The resulting Kcb + Ke curve can be seen in Figure 6.1-6. 

Soil water balance of the root zone using average NDVIsurf 
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Figure 6.1-5 Soil water balance of the root zone for Corn using general crop 
characteristics. 
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 6.1-6 Kcb + Ke curve for Corn generated using water balance model with general 
crop characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running 
average for visual curve comparison). 

 

Potato 

General crop characteristics simulations for potatoes gave a seasonal ET ratio of 

0.98 compared to METRIC and produced the smallest mean bias error of all simulations 

at -0.02 mm/day. The RMSD for the potato simulation using general crop characteristics 

was found to be 0.76 mm/day 

Again as observed in simulations utilizing potato specific characteristics 

simulated irrigations appear to lag the start of rapid potato crop growth. Analysis of the 

Kcb + Ke curve shown in Figure 6.1-8 shows that the first irrigation event is simulated 

approximately two weeks after the beginning of rapid crop growth. This coupled with the 

difference between water balance results and the METRIC Kc observation on June 3, 

suggest under estimation due to irrigation simulation. It seems that water balance model 

simulations lag the true start of the potato irrigation season within the Magic Valley. This 

problem could have been rectified by allowing irrigation for potatoes to proceed prior to 

 



 90

the Kcb ≥ 0.25. However, in this particular simulation, it is assumed that the specific crop 

type is unknown.  

Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 6.1-7 Soil water balance of the root zone for Potatoes using general crop 
characteristics. 
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Kcb + Ke using the average NDVIsurf of ten fields

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1-Mar 31-Mar 30-Apr 30-May 29-Jun 29-Jul 28-Aug 27-Sep 27-Oct

K
cb

 a
nd

 K
cb

 +
 K

e

Kcb curve Kcb+Ke curve
Splined METRIC Kc METRIC Kc
Kcb + smoothed Ke 

Potato

 
Figure 6.1-8 Kcb + Ke curve for Potatoes generated using water balance model with 
general crop characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running 
average for visual curve comparison). 

 

Sugar Beets 

Similar to simulations made with Potato fields the total seasonal deviation from 

METRIC ET decreased from -3.8% with sugar beet specific characteristics to -2.1% 

using the general crop characteristics. This can be attributed in part to the increase from 

13 to 15 simulated irrigation events between the two simulations. The same lag between 

the start of rapid crop growth and the first simulated irrigation as with potato simulation 

suggest need for earlier irrigation simulation.  

The RMSD for sugar beet simulations was the second lowest for all crop 

simulations with a value of 0.55 mm/day. Also the third highest r2 was found for sugar 

beet simulations with a value of 0.96.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 6.1-9 Soil water balance of the root zone for Sugar Beets using general crop 
characteristics. 

 

Kcb + Ke using the average NDVIsurf of ten fields
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Figure 6.1-10 Kcb + Ke curve for Sugar Beets generated using general crop characteristics 
(Kcb + smoothed Ke curve: Ke smoothed using 10 day running average for visual curve 
comparison). 

 



 93

Spring Grain 

As seen in Figure 6.1-11 a total of 11 irrigation events are simulated for the 

average spring grain field of the ten sampled fields when universal crop parameters are 

applied. Also a single irrigation is simulated late in the year as a result of an increase in 

vegetation growth seen in figure 6.1-12. This increase in vegetation could be due to 

replanting of many of the sampled fields with a winter grain crop, the growth of weeds, 

or ‘nursed’ alfalfa. The size of the last irrigation event is caused by the general 

assumption that the allowable depletion within the root zone increases to 70% of the 

available water after the crop is harvested. This increase eliminates further irrigations in 

most crops, but in this case where vegetation growth is observed and an additional 

irrigation simulated. 

Even with the extra large irrigation simulated seasonal estimates of the water 

balance model still slightly under estimate METRIC estimates with a seasonal ratio of 

0.98. Figure 6.1-12 also shows the majority of the under estimation occurring late in the 

season after the crop has been harvested. During this period of time it is possible that 

NDVI estimates may be artificially low due to the effect of crop residue left behind after 

the harvest. This residue can create difficulty in satellite based estimation of vegetation 

indices by altering the reflectance sensing by the satellite. This error in the NDVI 

estimation directly affects any estimate of ET based from NDVI.  It is also possible that 

grain stubble was irrigated during August, following harvest, to moisten soil for 

cultivation (disking etc.). These events would be missed by the water balance model. 

The overall RMSD for the spring grain simulation was 0.56 mm/day. The spring 

grain simulation also had the second highest model efficiency of 0.96.  
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Soil water balance of the root zone using average NDVIsurf 

for ten fields
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Figure 6.1-11 Soil water balance of the root zone for Spring Grain using general crop 
characteristics. 
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Figure 6.1-12 Kcb + Ke curve for Spring Grain generated using general crop 
characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running average for 
visual curve comparison). 
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Winter Grain 

Winter grain simulations using the general crop characteristics provided similar 

results to simulations for spring grain as expected. Again most of the underestimation of 

ET observed from METRIC occurred late in the season after crops had been harvested 

(Figure 6.1-14) and the seasonal ET ratio was 0.96. This under estimation in seasonal ET 

from that observed by METRIC was the largest under estimation of all crops examined 

using the general crop characteristics.  
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Figure 6.1-13 Soil water balance of the root zone for Winter Grain using general crop 
characteristics. 
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Kcb + Ke using the average NDVIsurf of ten fields
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Figure 6.1-14 Kcb + Ke curve for Winter Grain generated using water balance model with 
general crop characteristics (Kcb + smoothed Ke curve: Ke smoothed using 10 day running 
average for visual curve comparison). 

 

6.2. Individual Field Simulation using General Crop Characteristics 

The use of a crop classification free approach has promise for accurate ET 

estimates from individual fields. General simulations for corn showed the highest 

accuracy (compared to METRIC) with an r2 of 0.94 and the lowest mean absolute 

difference of 0.61 mm/day.  The RMSD for the corn simulation was also the lowest for 

all crops with a value of 0.81 mm/day.   

The largest discrepancies between water balance model results and METRIC 

observations were found in bean and alfalfa simulations with r2 values of 0.77 and 0.78 

respectively.  The RMSD values obtained for beans of 1.36 mm/day was the highest of 

all crop simulations using the general crop characteristics. Potato and winter grain 

simulations yielded the second highest RMSD with values of 1.22 mm/day.  

While the alfalfa model standard deviation was the lowest with a value of 1.8 

mm/day, the lowest model efficiency of 0.70 and largest MBE of 0.59 mm/day, indicate 
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the poorest agreement with METRIC when looking at individual fields. This large 

discrepancy between water balance model and METRIC for individual alfalfa fields is 

due to the large variation in the actual field conditions among the high numbers of alfalfa 

fields present in a given area. Improvements in agreement were obtained using crop 

characteristics specific to alfalfa as discussed in section 5.   

 

Table 6.2-1 Summary of individual field simulations for all crop types using general crop 
characteristics and general Kcb-NDVI relationship (10 field simulations for each crop 
with 12 image sub-period observations gives a total n = 120 for each crop type). 

n=120 Stdev model Model RMSD MADiff MAPDiff MBE 
Crop (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 1.8 0.70 1.15 0.91 20.0 0.59 0.78
Beans 2.3 0.76 1.36 0.92 34.2 -0.16 0.77
Corn 2.7 0.93 0.81 0.61 15.0 0.09 0.94

Potatoes 2.9 0.82 1.22 0.73 17.2 -0.01 0.83
Spring Grain 3.0 0.88 1.06 0.75 20.4 -0.19 0.89
Sugar Beets 2.7 0.83 1.13 0.62 13.3 -0.07 0.84
Winter Grain 2.9 0.86 1.22 0.95 24.1 -0.22 0.87

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-period from the Kcb + Ke
water balance model (predicted) and METRIC (observed) for March 1, 2000 to October 31, 2000  

 

6.3. Kcb + Ke WBM for Average Field Condition in the Magic Valley  

To test the performance of the water balance model on average field conditions, 

the NDVI and METRIC Kc were sampled from a total of 3,574 fields throughout the 

Magic Valley. Simulations using the average field conditions, constructed using the 

average NDVI of all fields sampled of each crop type, were carried out using the general 

crop characteristics and then compared to the average METRIC ET estimates from all 

sampled fields of each crop type. Table 4.1-1 shows the total number of samples 

corresponding to each crop under consideration.  

The average crop (field) condition within the Magic Valley was tested using the 

average NDVI from all sampled fields of all crop types and then simulations performed 

using the general crop characteristics and general Kcb-NDVI relationships. This was 

conducted as a crude representation of the ability of the water balance model to replicate 
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average ET estimates made by METRIC using a single water balance model simulation 

for each crop type.   

With the exception of alfalfa and the average crop condition, water balance model 

simulations of seasonal ET were within 6% of METRIC observed seasonal ET. Here the 

‘average crop condition’ reported in Tables 6.3-1 and 6.3-2, is constructed using the 

average NDVI sampled from all 3,574 fields sampled throughout the Magic Valley in the 

year 2000. This average crop condition, while ambiguous, is used simply to demonstrate 

an average simulation using the universal Kcb-NDVI relationship and general crop 

characteristics.   

Improvement in the agreement of the water balance model to METRIC occurred 

for the average crop simulation when the average Ke from 10 simulations for each of the 

seven crop simulations (see section 5.5) was utilized, dropping the deviation from 

METRIC to within 4% for seasonal estimates, again excluding alfalfa and the average 

NDVI simulation (Table 6.3-2). While this type of average Ke utilized within the water 

balance would not be possible with the ‘classification free’ approach, it is presented here 

to show the improvement in water balance model results when a ‘smoothed’ Ke is 

available. Other methods of Ke smoothing would need to be explored for a true 

‘classification free’ approach.  

 
Table 6.3-1 Summary of average field condition simulations for all crops using general 
crop characteristics and Ke from one individual irrigation simulation per crop type using 
general Kcb-NDVI relationship (average field condition defined using NDVI averaged 
over all fields sampled for each crop type). 

n = 12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop # fields Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 325 1.16 1.68 0.78 0.85 0.69 15.0 0.64 0.92
Beans 432 1.05 2.33 0.93 0.65 0.47 18.9 0.11 0.93
Corn 474 0.97 2.87 0.90 0.87 0.50 11.8 -0.09 0.91

Potatoes 717 1.05 2.82 0.93 0.71 0.52 13.9 0.22 0.94
Spring Grain 546 1.05 2.91 0.94 0.72 0.60 17.8 0.03 0.94
Sugar Beets 516 1.00 2.66 0.95 0.56 0.38 8.3 0.03 0.96
Winter Grain 564 1.06 2.89 0.91 0.97 0.75 20.4 0.11 0.91
Average crop 3574 1.20 1.76 0.85 0.71 0.59 17.8 0.59 0.97

**Note: Average crop is estimated with the average NDVI and METRIC Kc from all 3,574 fields
**Note: All comparisons are made bewteen ET estimated by Kcb + Ke WBM and results from METRIC as if METRIC is truth  
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Further evidence in the utility of incorporating average irrigation frequencies can 

be seen in Table 6.3-2 where simulations are made, again using general crop 

characteristics, incorporating the average Ke obtained from the ten individual field 

simulations presented above. It is noted here that individual field simulations used to 

construct the average Ke for this comparison also used general crop characteristics. 

 

Table 6.3-2 Results for average field condition simulations using general crop 
characteristics and the Ke averaged from ten individual field simulations for each crop 
type using general Kcb-NDVI relationship. 

n = 12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop # fields Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 325 1.16 1.71 0.79 0.84 0.65 14.1 0.62 0.92
Beans 432 1.03 2.31 0.95 0.55 0.45 18.3 0.05 0.95
Corn 474 0.96 2.78 0.94 0.70 0.44 10.4 -0.16 0.94

Potatoes 717 1.03 2.77 0.93 0.72 0.48 12.8 0.14 0.94
Spring Grain 546 1.02 2.95 0.95 0.64 0.52 15.4 -0.03 0.95
Sugar Beets 516 0.99 2.63 0.95 0.55 0.36 8.0 -0.02 0.96
Winter Grain 564 1.02 2.92 0.93 0.86 0.67 18.2 -0.02 0.93
Average crop 3574 1.06 1.62 0.95 0.40 0.36 10.67 0.15 0.97

**Note: Average crop is estimated with the average NDVI and METRIC Kc from all 3,574 fields
**Note: All comparisons are made bewteen ET estimated by Kcb + Ke WBM and results from METRIC as if METRIC is truth  

Using an average irrigation scheme provides seasonal ET estimates well within 

4% of METRIC for average crop field conditions with the exception of alfalfa which 

retained it’s 16% over estimation. Simulations for the average crop, including all sampled 

alfalfa fields, produced seasonal ET estimates within 6% of the average ET estimates 

from METRIC from all fields with an r2 of 0.97.  

 

6.4. Evaporation Fraction of total ET  

The portion of total seasonal ET corresponding to evaporation can be quite large. 

Table 6.4-1 shows the fraction of seasonal evaporation to the total seasonal ET for 

simulations conducted on the average field condition for each crop within the Magic 

Valley.  

Resulting seasonal evaporation fractions compare well with past work carried out 

within the Magic Valley by Allen et al, (2006) who found seasonal evaporation 
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percentages of 32% for beans and 19% for winter grain crops. Water balance model 

simulations using general crop characteristics and individual irrigation simulations (ten 

simulations per crop) for Ke, produced the highest estimates of evaporation in most cases. 

Potato and bean crops provided the exception with higher amounts of evaporation 

occurring in crop specific characteristic simulations (due to their actual root zone 

depletions being less than the all-crop average). Beans had the overall highest amounts of 

seasonal evaporation, which is expected given the more sparse crop cover characteristics 

for beans coupled with their short growing season, giving way to longer periods of bare 

soil conditions.  

 

Table 6.4-1 Fraction of seasonal Evaporation to seasonal ET (March 1 to October 31) for 
simulations using the average field condition for the Magic Valley (Average field created 
using average NDVI from all sampled fields of a specific crop type). 

Crop General General + Ave_Ke Crop specific Crop Specific + Ave Ke
Alfalfa 0.16 0.15 0.09 0.08
Beans 0.30 0.30 0.36 0.35
Corn 0.19 0.19 0.17 0.17

Potatoes 0.21 0.20 0.28 0.28
Spring Grain 0.21 0.19 0.19 0.16
Sugar Beets 0.16 0.15 0.15 0.15
Winter Grain 0.17 0.14 0.13 0.12

**Note: General refers to simulations made using the general crop rooting and height characteristics and general 
(Classification free), and crop specific are simulations using custimized Kcb-NDVI relationships and crop specific 
Kcb-NDVI relationship rooting and height characteristics for each crop type. The use of Ke averaged over ten 
individual field simulations per corp is denoted by + Ave_Ke  
 
 

6.5. Loss or Gain of Accuracy with Classification Free Approach 

The largest loss in accuracy associated with the crop type classification free 

approach was found with alfalfa simulations. This large disagreement between METRIC 

observations and estimates predicted by the water balance model using general crop 

characteristics can be attributed to several characteristics unique to alfalfa. As discussed 

previously, alfalfa crops are cut frequently throughout the growing season and the 

frequency of these cuttings for individual fields occurs essentially at random in a large 

population of fields. This can cause error in any NDVI based estimation due to the high 

variability in vegetation cover throughout the growing season. In addition the maximum 
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root zone for alfalfa of approximately 2 m (Table 4.3-2) is twice the average ‘general’ 

depth of 1 m. Therefore irrigations were scheduled about twice as often for alfalfa using 

the crop type classification free application as compared to typical surface irrigation 

schedules common within the Magic Valley. It is unclear, however; why the METRIC-

based ET, which includes center pivot (high frequency) irrigated fields did not indicate 

these same effects. 

Of the 70 individual fields sampled (ten fields for each of the seven crops under 

consideration), seasonal ET estimates using the general crop characteristics and general 

Kcb-NDVI relationship actually replicated METRIC seasonal ET more accurately, on 

average, than did the custom crop characteristic models with a seasonal MBE of only 

1.4% versus -3.8% respectively. While this only represents a handful of field 

observations it does provide evidence for the usefulness of crop classification free 

simulations. Figure 6.5-1 shows the comparison of METRIC seasonal ET with seasonal 

ET estimated using the classification free approach. The high over estimation of alfalfa 

field simulations can also be seen in Figure 6.5-1. 

Seasonal ET comparison from 70 agricultural fields 
within the Magic Valley for the year 2000
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Figure 6.5-1 Seasonal ET estimates from METRIC compared with seasonal ET estimates 
using general Kcb-NDVI relationships and general crop characteristics. 
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7.0 COMPARISON OF ET ESTIMATES FROM Kcb + Ke WBM 

AND Kc_mean METHODS 

One question that arises in the examination of ET estimation methods based on 

vegetation indices is, Does the accuracy obtained by using an FAO 56 dual crop 

coefficient procedure (Kcb-NDVI relationship + Ke from water balance model) justify its 

use as opposed to a less intensive single crop coefficient procedure (Kc_mean-NDVI 

relationship)? In the Kc_mean procedure all impacts of evaporation from soil (Ke) are 

averaged, along with Kcb, into a single coefficient that is applied to all cases for a 

specific crop, or even all crops, if universal. Past work by Allen et al, (in preparation) 

developed ‘mean’ Kc-NDVI relationships and then performed ‘single’ crop coefficient 

procedures following the FAO 56. 

The analysis of Allen et al, (pending) was conducted on a total of 3,420 

agricultural fields within the Magic Valley. A universal relationship was fitted between 

the METRIC derived Kc (ETrF) and the at-surface NDVI for the sampled fields. In their 

analysis alfalfa crops were excluded from the Kc_mean-NDVI determination because of 

the random cutting schedules which occur among fields throughout a large area. The 

universal linear relationship found by Allen et al, (in preparation) for agricultural areas of 

the Magic Valley was as follows: 

04.0*02.1_ += surfNDVImeanKc  (45) 

 

Table 6.5-1 Sampled pixels used for the construction of Kc_mean-NDVI relationships by 
Allen et al, (in preparation) for crops within the Magic Valley for the year 2000. 

Crop # fields Crop # fields
Alfalfa 325 Sugar Beet 495
Bean 432 Spring Grain 536
Corn 451 Winter Grain 564

Potato 617 Total 3420  

For comparative purposes this universal linear relationship was implemented on 

the 70 randomly sampled fields discussed in chapters 5 and 6 ( 10 fields for each of sthe 
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seven crops under consideration) and ET estimates compared to ET estimates made by 

the water balance model as well as METRIC ET observations.  Table 6.5-2 presents the 

results of seasonal ET estimates based on the Kc_mean-NDVI relationship. Estimates 

made using the Kc_mean from NDVI gave the largest underestimation of seasonal 

METRIC ET observations of about 9% for spring grain fields and over estimation of 

seasonal ET as high as about 5% with alfalfa field simulations. It is noted that the 

development of the universal Kc_mean-NDVI relationship excluded alfalfa crops. If 

alfalfa is excluded from the comparison the largest deviation from METRIC observed 

using the Kcb + Ke water balance model with general crop characteristics and general Kcb-

NDVI relationships was 4 % overestimation of corn crops and 4 % underestimation in 

winter grain simulations (Table 6.1-1).  

 

Table 6.5-2 Results of Kc_mean-NDVI relationship ET estimates from the average NDVI 
of ten randomly sampled fields of each crop type for March 1 to October 31 (same ten 
fields as discussed for water balance results in chapter 5 and 6). 

n=12 Seasonal Stdev model Model RMSD MADiff MAPDiff MBE 
Crop Ratio (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

Alfalfa 1.05 1.80 0.92 0.53 0.37 8.17 0.16 0.93
Beans 0.96 2.13 0.90 0.83 0.65 24.2 -0.1 0.93
Corn 1.00 2.70 0.97 0.49 0.40 9.93 -0.08 0.98

Potatoes 0.93 2.92 0.95 0.63 0.41 9.55 -0.22 0.96
Spring Grain 0.91 2.90 0.97 0.49 0.37 10.11 -0.31 0.99
Sugar Beets 0.93 2.75 0.97 0.45 0.34 7.30 -0.26 0.98
Winter Grain 0.94 2.84 0.94 0.79 0.55 13.92 -0.28 0.96

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-period from the Kc_mean-NDVI
relationship developed by Allen et al, (in prep.) (predicted) and METRIC (observed) for March 1, 2000 to October 31, 2000  

While seasonal ET estimates for water balance model simulations perform more 

accurately for most crops the r2 values for the Kc_mean versus NDVI estimates are 

higher in most all crop simulations than for water balance model estimates. The lower r2 

for water balance model simulations is the result of differences on individual dates when 

irrigations are simulated but may not correspond to actual irrigations and therefore differ 

from ET estimates made by METRIC at that time (Figure 6.5-1). While the r2 values 

presented in all tables are based on the average daily ET over image sub-periods, the 

effects of large daily variation in Ke is still seen. Because the Kc_mean ET estimates are 

directly related to NDVI, we would expect smaller ranges in daily ET estimates at any 
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given period. With the water balance model we would expect a large range of daily 

estimates early in the year when low NDVI and the Ke from irrigations or precipitation 

create spikes in Kcb + Ke up to the maximum values and low ranges in estimates later in 

the year when NDVI is high (closer to the maximum Kc). Figure 6.5-1 shows crop 

coefficient curves generated for average potato crops using all Kc development methods 

discussed in this paper. 

Crop Coefficients using the average NDVIsurf of ten fields
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Figure 6.5-1 Comparison of daily crop coefficients for potato crops (average NDVI from 
ten randomly sampled potato fields) using various Kc estimation techniques within the 
Magic Valley for the year 2000. 

 

The results of ET estimate simulations using average Magic Valley field 

conditions for each crop type are compared in Table 6.5-5. The MBE was lowest for crop 

specific water balance model simulations using crop specific Kcb-NDVI relationships 

with approximately zero MBE. General water balance model simulations resulted in the 

highest MBE of 0.15 mm/day but were reduced to 0.08 mm/day when attempts were 

made to incorporate a ‘smoothed’ Ke averaged over ten individual field simulations for 

each crop type. Again this type of smoothing would not be possible in a true crop 
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classification free approach but does show the value in using ‘smoothed’ Ke to reduce 

daily deviation in ET estimates from METRIC observations.  

 

Table 6.5-3 Comparison of ET estimates from both general and crop specific water 
balance model simulations to ET estimates from Kc_mean-NDVI for average field 
conditions within the Magic Valley ( n = 84, 12 image sub-period estimates for 7 crop 
types) Average field condition is using the average NDVI from all fields listed in Table 
4.1-1 for each crop type. 

n=84 Stdev model Model RMSD MADiff MAPDiff MBE 
Model (mm/day) Efficiency (E) (mm/day) (mm/day) (%) (mm/day) r2

General Kcb + Ke 2.7 0.92 0.75 0.56 14.7 0.15 0.93
General Kcb + Ke_ave 2.6 0.93 0.68 0.51 13.4 0.08 0.94

Custom Kcb + Ke 2.7 0.93 0.71 0.50 13.2 0.00 0.93
Kc_mean  2.6 0.96 0.53 0.39 10.3 -0.04 0.96

**Note:  Evaluation was conducted using the average daily ET (mm/day) over each satellite sub-periods from each model (predicted)
and METRIC (observed) for March 1, 2000 to October 31, 2000. Ke_ave refers to the use of a Ke averaged over ten individual irrigation 
simulations, general simulations used general Kcb-NDVI relationships and Custom the crop specific Kcb-NDVI relationships.  

 The use of the dual crop coefficient based water balance model does appear to 

provide increased accuracy in seasonal ET estimates compared to ET estimates observed 

by METRIC. When crop classification is known water balance model estimates of 

seasonal ET can be obtained within 5% of METRIC observations. Water balance model 

simulations using general Kcb-NDVI relationships and general crop characteristics found 

seasonal ET estimates within 4% when excluding alfalfa field simulations (general water 

balance simulations gave up to 17 % over estimation of METRIC seasonal ET for alfalfa 

fields).  

 

7.1. Analysis of Variance 

The analysis of variance within each of the ET estimation techniques was made 

for a total of 840 (7 crops, 10 individual field simulations, 12 image sub-period average 

daily ET estimates) ET estimates made by each ET estimation model. The models tested 

were the Kcb + Ke water balance model using general crop characteristics (Classification 

free), the Kcb + Ke water balance model using crop specific Kcb-NDVI relationships and 
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specific crop characteristics, Kc_mean-NDVI ET estimation, and the observed METRIC 

ET estimates.  

Histograms of all model results were compared and found to correspond to the 

assumption of approximate normal distributions. The main question to be answered by 

looking at the analysis of variance was to determine if the differences observed in ET 

estimates from each of the models were significantly different from observed ET 

estimated from METRIC processing. The primary hypothesis is that ET predictions made 

using water balance model techniques as well as Kc_mean-NDVI techniques provide 

similar results to METRIC observations and therefore can provide accurate ET estimates 

in the absence of thermal satellite imagery. 

As expected the highest variance found between ET estimation model type were 

explained by the variances in crop type and image sub-period. Once variation due to crop 

type and image date sub-period were considered remaining variations in ET estimation 

was explained by estimation model method. This is at least in part expected when 

considering the wide range of conditions present from early spring to fall and between 

crop types. Table 7.1-1 gives the output of analysis of variance where attempt was made 

to exclude the main effect of image sub-period on model comparison by nesting the sub-

period with the crop type. Statistically using the analysis of variance we are unable to 

conclude that all ET estimation models provide statistically similar results. 

 

Table 7.1-1 Analysis of Variance output table generated in SYSTAT 11 testing average 
daily ET estimates of four model types. 

Source Type III SS df Mean-Square F-ratio
MODEL$ 22.873 3 7.624 9.18
CROP$ 1526.723 6 254.454 306.354
SUBPERIOD (CROP$) 21845.502 77 283.708 341.575
Error 2718.511 3273 0.831  

The next analysis conducted was a pair-wise comparison of average daily ET 

estimates made by each of the four methods.  Table 7.1-2 presents the results of all pair-

wise comparisons of ET estimates. It is apparent that based on comparisons of 840 
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average daily ET estimates (from the 70 randomly sampled fields) from each model that 

estimates made using the general water balance model and METRIC observations are not 

statistically different for these field observations.   

 

 

Table 7.1-2 Games-Howell Test for pair-wise comparison of average daily ET estimates 
for each model considered (generated using SYSTAT 11). 

MODEL$ (i) MODEL$ (j) Difference p-value 95% Confidence Interval
Lower Upper

Custom Kcb + Ke Kc_mean -0.006 1.000 -0.350 0.337
Custom Kcb + Ke General Kcb + Ke -0.170 0.588 -0.518 0.177
Custom Kcb + Ke METRIC -0.166 0.637 -0.526 0.194

Kc_mean General Kcb + Ke -0.164 0.599 -0.503 0.175
Kc_mean METRIC -0.159 0.649 -0.511 0.192

General Kcb + Ke METRIC 0.004 1.000 -0.351 0.360  
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8.0 TESTING SPATIAL AND TEMPORAL APPLICABILITY 
 
 

8.1. Path 40 year 2000 

The following discussion presents the results of spatial Kcb + Ke model 

simulations of ET for the entire Magic Valley for the year 2000. The twelve Landsat 5 

and 7 images of Path 40 year 2000, previously discussed, were used to create seasonal ET 

estimates from the water balance model simulations. Crop specific simulations were first 

conducted using the 2000 crop classification and crop specific Kcb-NDVI relationships 

presented in chapter 4. The simulation used average daily Ke, obtained from the ten 

individual field simulations presented in chapter 5, for each crop type using the crop 

classification. Unclassified pixels were given daily Ke values averaged over all individual 

crop simulations. Using the Ke averaged over all fields for the unclassified pixels proved 

problematic as this added a higher Ke to non-agricultural (desert) pixels than would 

actually occur. This can be seen in the seasonal ET maps presented in Figures 8.1-1 and 

8.1-2, where desert areas from the Kcb simulation had unrealistically high seasonal ET 

estimates.  In practice, this could be removed by using land use type and Kcb + Ke 

simulation for desert areas.  

The visual comparison of the seasonal ET maps generated by both METRIC and 

the Kcb water balance model approach shows the largest differences in desert areas and 

water bodies. METRIC is able to sense evaporation occurring from water bodies where 

the Kcb approach (as applied here) can not. The inability of the Kcb model to assess 

evaporation from water bodies is a direct result of the use of the vegetation index. The 

NDVI of water bodies is negative which explains the low estimates of ET for water 

bodies by the Kcb water balance model approach. It is also noted the resolution of the 

short wave bands used to obtain NDVI are 30 X 30 m for both Landsat 5 and 7, while the 

thermal band used in METRIC processing has a 120 X 120 m resolution for Landsat 5 

and a 60 X 60 m resolution in Landsat 7. The reduced resolution in the thermal bands 

creates the ‘fuzzy’ appearance of the METRIC ET map.  
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Figure 8.1-1 Seasonal ET map generated using Kcb-NDVI + Ke approach for the year 
2000 (1-Mar to 31-Oct) within the Magic Valley near the communities of Murtaugh and 
Hansen Idaho. 

 

Seasonal ET (mm)
0-250

250-500
500-750
750-1000
1000-1250
1250-1500

Figure 8.1-2 Seasonal ET map generated using METRIC processing for the year 2000 (1-
Mar to 31-Oct) within the Magic Valley near the communities of Murtaugh and Hansen 
Idaho. 
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To test the results of the spatially distributed Kcb water balance model results a 

total of 8,521 agricultural pixels were sampled from within the Magic Valley. Table 8.1-1 

gives the number of samples taken from each crop type under consideration. These 

sampled pixels represent pixels where no cloud cover was present on any of the twelve 

image dates (Figure 8.1-3).  

 

 
Figure 8.1-3 Cloud free sampled pixels within the agricultural area of the Magic Valley 
for the year 2000. 

 

Table 8.1-1 Sampled "cloud free" fields for seasonal ET comparison for crops within the 
Magic Valley for the year 2000. 

Crop # Pixels Crop # Pixels
Alfalfa 526 Spring Grain 1354
Beans 1110 Sugar Beets 831
Corn 1255 Winter Grain 1059

Potatoes 2386 All crops 8521  
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Seasonal ET from each of the estimation methods were then sampled from all 

sampled pixels. Here it is important to note that while sampled pixels were filtered to 

ensure that no error was introduced by the presence of clouds, no attempt was made in 

this analysis, to avoid field edges and the accompanying error in METRIC estimates due 

to thermal pixel contamination. Table 8.1-2 gives the average deviation of Kcb + Ke water 

balance model seasonal ET from METRIC seasonal ET. The average deviation for all 

sampled pixels regardless of crop type was only 1.3% from observed METRIC ET. The 

largest deviation was again found from alfalfa fields with an average deviation of 7.9%. 

Simulations for potato and corn crops performed the best with -0.5 and -0.6% deviations 

respectively.  

 

Table 8.1-2 Percentage deviation in seasonal ET estimates of Kcb + Ke water balance 
model from observed METRIC seasonal ET from 8,521 sampled pixels. Negative values 
represent under estimation of the water balance model compared to METRIC 
observations. 

Crop %dev from METRIC Crop %dev from METRIC 
Alfalfa 7.9 Spring Grain 1.3
Beans 1.8 Sugar Beets 3.6
Corn -0.5 Winter Grain 1.2

Potatoes -0.6 All crops 1.3  

While the average deviation of the crop specific water balance model ET 

estimates from METRIC observations is small, Figure 8.1-4 shows that for individual 

fields the deviation can be quite large. In some cases the deviation for individual fields 

was as high as 60% of METRIC observations. However, the next section discusses how 

much of this difference is attributed to thermal pixel contamination near field edges. This 

illustrates the need to utilize METRIC processing when thermal satellite information is 

available. 
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Comparison of seasonal ET estimates for 8,521 
sampled pixels within the Magic Valley year 2000
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Figure 8.1-4 Comparison of seasonal ET estimates from the crop specific Kcb + Ke water 
balance model and observed METRIC estimates no filtration of possible thermal 
contamination.  

Because many of the sampled pixels were taken from field edges where thermal 

pixel contamination can cause METRIC ET estimates to deviate from the field-average 

(Tasumi et al. 2003, Allen et al. 2007a), the next analysis was performed using pixels 

sampled by Tasumi et al, (2003) where care was taken to select only pixels within fields 

away from thermal contaminated field edges (near the center of fields). All pixels in this 

analysis were also cloud filtered so that sampled fields had no cloud cover on any 

Landsat image dates. Table 8.1-3 lists the total number of fields sampled for each crop 

type representing cloud free locations. 

 

Table 8.1-3 Sampled fields based on crop type within the Magic Valley for the year 2000. 
All sampled fields are taken well within field edges to avoid contamination by thermal 
pixels (thermal contamination can cause within-field bias in METRIC ET estimation), as 
well as filtered so that no cloud cover was observed for any of the Landsat image dates. 

Crop # fields Crop # fields
Alfalfa 241 Sugar Beet 285
Bean 228 Spring Grain 282
Corn 346 Winter Grain 258

Potato 409 Total 2049  
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Figure 8.1-5 shows the comparison of seasonal ET between METRIC and the 

crop specific Kcb + Ke water balance model seasonal ET estimates. Comparison of figure 

8.1-5 and Figure 8.1-4 show reduced scatter in results by excluding cloud and thermal 

pixel contaminated pixels (near field edges) in the ET analysis. In this case the average 

deviation between water balance model results and METRIC observations was reduced to 

-0.2 % for all sampled fields regardless of crop type (Table 8.1-4). Here the deviation 

from METRIC was reduced to about 0.5 % for alfalfa fields but was increased for bean 

crops to about 8 % over estimation.  

Comparison of seasonal ET estimates from 2049 
agricultural fields with no cloud cover on any 
image date within the Magic Valley year 2000
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Figure 8.1-5 Seasonal ET comparison between METRIC and the custom Kcb-NDVI water 
balance model results using crop specific crop characteristics. 

It is noted from Figure 8.1-5 that the actual relationship between water balance 

model seasonal ET estimates and METRIC observations is actually less than one to one. 

This difference occurs for several reasons. First, in conditions of low vegetation (bare soil 

or near bare soil) when an irrigation or precipitation event occurs, a large spike in the 

evaporation component (Ke) of ET is observed. Observations made by METRIC at these 

times sees the ‘average’ effect of this spike in ET, and therefore at low rates of ET the 

water balance model tends to predict higher rates of ET than METRIC (when averaged 

over a large number of pixels).  Second, during full cover conditions (this time period 

accounts for the highest percentage of seasonal ET) METRIC is able to capture the effect 
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of wet soil surface beneath full cover vegetation, following precipitation or irrigation, 

which can increase the rates of ET about 5 % higher than the reference ET (ETr). 

METRIC applications within the Magic Valley has found peak Kc values of 1.1 which 

corresponds to a 10% higher ET rate than the reference (Tasumi et al. 2005). This in part 

explains why at high values of seasonal ET METRIC tends to predict higher ET than the 

water balance model estimates. 

 
Table 8.1-4 Average deviation for METRIC seasonal ET estimates using the Kcb + Ke 
water balance model with crop specific characteristics and custom Kcb-NDVI 
relationships for each crop. Negative values represent under estimation by the water 
balance model compared to METRIC observations. 

Crop % dev from METRIC Crop % dev from METRIC 
Alfalfa 0.5 Spring Grain -0.2
Beans 8.0 Sugar Beets 1.1
Corn -5.6 Winter Grain -1.3

Potatoes -1.0 All crops -0.2  
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9.0 AUTOMATIC ANCHOR PIXEL SELECTION 

In determining ET, the METRIC process utilizes hot and cold anchor pixels to set 

boundary conditions for pixels exhibiting 0 or nearly 0 ET (hot pixel) and those with 

maximum ET (cold pixel). METRIC differs from other energy balance models by 

assigning the cold pixel to a well-irrigated crop within an agricultural field at full cover 

and assigning reference ET, ETr, or some fraction of ETr to that pixel. The SEBAL 

energy balance model often assigns the cold pixel temperature to that of local water body. 

The METRIC hot pixel candidate is also selected from agricultural areas but is associated 

with a dry, bare field where it can be assumed that ET is approximately 0. In cases where 

substantial precipitation has occurred within a week or so of the image, it is possible for 

the hot pixel to have some positive amount of ET. In these cases, it is necessary to 

conduct a daily soil water balance to estimate the amount of evaporation occurring from 

bare soil due to antecedent soil moisture. 

NDVI and surface temperature are the two most important pieces of information 

in the identification of hot and cold pixels. From the energy balance equation it is seen 

that physically, ET will be highest when the sensible heat flux is the smallest. 

ETGRH n −−=  (46) 

Furthermore, examination of the sensible heat flux equation shows that it will 

have the smallest value at low surface temperatures 

ah

aSp

r
TTc

H
)( −

=
ρ

 (47) 

This coupled with the strong correlation between agricultural crops with high 

vegetation cover (high NDVI) and low temperature proves very useful in the 

determination of cold anchor pixels. Statistically out of the nearly 30 million pixels 

within a Landsat image we would expect to find a representative cold pixel within the top 

percentages of high NDVI and within the lowest percentages of surface temperature. 
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Similarly we would expect that statistically the hot pixel would lie within the 

hottest pixels within a given image, and because METRIC defines the hot anchor pixel as 

bare agricultural field exhibiting nearly zero ET, we would expect low values for NDVI 

ranging from 0 to 0.2. The hot anchor pixel will be more difficult to determine 

statistically from surface temperature due to the high amount of desert area found in the 

western United States. Desert areas tend to have a much higher surface temperature than 

surrounding agricultural areas (Allen et al 2006 and Lorite et al 2005) and therefore 

additional methods were analyzed to determine representative hot anchor pixels. Some 

interaction by the operator is probably necessary for hot pixel selection such as the 

delineation of an area of interest within an agricultural area where the user feels bare soil 

is present. 

Other relationships were examined to find possible correspondence between the 

parameters albedo, estimated LAI and the hot pixel. Also because the hot pixel is 

assumed to be from a bare agricultural field with little or no ET, we would expect the soil 

to be dry. The ability to determine the amount of moisture within a given soil would be a 

valuable tool. While the remote sensing of soil moisture is best applied using the 

microwave portion of the electromagnetic spectrum, most satellites are not equipped with 

sensors within this wavelength.  

 

9.1. Ts and NDVI statistics 

To study the behavior of the hot and cold pixel conditions and to set up for the 

analysis of statistical selection of the METRIC model calibration “anchor” pixels, 

METRIC generated Kc, albedo, TS, and NDVI values were sampled from all pixel 

locations exhibiting Kc near that of both the hot (Kc = -.03 to 0.03) and cold (Kc = 1.02 to 

1.08) anchor pixels. This was accomplished using METRIC images for Path 39 year 

2000, processed by the University of Idaho (Trezza et al, 2006 UI document) and using 

Trezza’s manually selected anchor pixels as target values. 

By examining relationships between Kc, TS, albedo, and NDVI from pixels 

exhibiting Kc ranges within the range of the hot and cold anchor pixels, strong 
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correlations between TS, NDVI and Kc were observed. As expected the expert-user-

defined cold anchor pixel had an NDVI within the highest percentage of all NDVI values. 

It is interesting to note however, that a broad range of NDVI (≈ 0.15 range) for pixels 

exhibited an ETrF near that of the cold pixel (Figure 9.1-1). The user defined hot pixel 

was located within the lowest NDVI, as expected, but again exhibiting a fairly large 

range in NDVI (≈ 0.20 range) at values of ET near zero. 

NDVI vs METRIC derived Kc for Path 39

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09

M ETRIC Kc (ETrF)

N
DV

I

User defined Cold pixel

8/7/2000
NDVI vs METRIC derived Kc for Path 39

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

-0.04 -0.02 0.00 0.02 0.04

METRIC Kc (ETrF)

N
D

VI

User defined Hot pixel

8/7/2000

 
Figure 9.1-1 NDVI versus Kc analysis for fields sampled with in Path 39 exhibiting Kc 
(ie. ETrF) near that of the "cold anchor" pixel and the “hot anchor” pixel. 
 

9.2. Statistical Selection of the Cold pixel 

The analysis of the automatic selection of “anchor” calibration pixels used in 

METRIC was first conducted using Landsat path 39 data which covers the Aberdeen and 

American Falls areas of southern Idaho (Figure 9.2-1). A total of twelve Landsat 5 and 7 

images were available for path 39 year 2000. All NDVI, METRIC ETrF, TS, and other 

pertinent data were sampled near Aberdeen from METRIC processing conducted by 

Trezza (2006).  

The establishment of an area of interest (AOI) from which to sample the TS and 

NDVI data was found to be a vital component of the statistical process. Better results 

were achieved when the selected AOI was delineated well within an agricultural area 

with care to eliminate as much non-agricultural (desert, water bodies, etc) as possible. 

The AOI is drawn for an area where it is believed that both cold and hot anchor pixels 
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reside and should contain 10,000 to 30,000 acres (5,000 to15,000 ha). The effect of AOI 

delineation on final results was more profound for the statistical selection of the hot pixel 

than for the cold pixel due to the bias in statistics caused by large amounts of dry desert; 

however both the cold and hot pixel were selected from the same AOI sampled data set. 

Figure 9.2-1 shows the agricultural AOI from which statistical analysis was conducted.  

 

 
Figure 9.2-1 Path 39 study area near Aberdeen Idaho, water body shown is American 
Falls Reservoir, and area of interest (AOI) is outlined in blue. 

 

To ensure accurate results, Landsat images were cloud masked for each image 

date (to eliminate cold pixels caused by clouds) and filtered for thermal contamination 

near field edges (where thermal pixels represented a mixture of conditions inside and 

outside fields and therefore were not suitable candidates). Thermal contamination was 

filtered using by calculating the coefficient of variation (CV) of NDVI between 

shortwave (30 meter resolution) pixels for all pixels within a thermal pixel within a given 

image (similar to Kustas et al., 2003). In this study a CV of 15 was used as the threshold 

value to ensure that thermal pixel selection was not near field edges or areas having non-

uniform NDVI (Figure 9.2-2).  
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Figure 9.2-2 Coefficient of Variation in NDVI used to filter out edges of fields where 
contamination of Landsat data can occur due to the thermal pixel. 

Samples were taken over the study area using a 245m by 330m grid. This 

included over 3,100 sample locations, which were then sampled for NDVI, METRIC Kc, 

TS, and albedo. All data were then cloud and CV filtered as discussed above.  

While various statistics were tested only the methodology associated with the 

selected statistics are presented. For a discussion of other statistics tested the reader is 

referred to appendix B. The selected statistical method for delineating both the cold and 

hot pixels was first proposed by R. Allen and C. Kelly, (2005, personal communication) 

and were investigated here. Following the cloud and CV filtering, statistical selection was 

performed on the remaining sampled points to identify statistically derived cold anchor 

pixels to be used in METRIC calibration as: 

Cold Pixel Statistics 

Using a defined AOI well within an agricultural area, 

1. Select the top 5% of the highest NDVI 
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2. From the group made in step 1, select the coldest 20% of TS 

3. Take the average TS of the reduced sample (step 2) as TS of the cold pixel 

The statistics described above were applied to each of the twelve image dates in 

Path 39. The image on May 3, 2000 had significant cloud cover over the study area and 

comparison on that date was not possible for the cold pixel. Figure 9.3-4 shows the 

comparison of the statistically derived TS to the user defined TS throughout the growing 

season. In this case the user defined cold pixel temperatures were determined by the 

University of Idaho METRIC team during the processing of Path 40 year 2000 (Trezza, 

2001). 
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Figure 9.2-3 Comparison of user defined cold pixel temperature with statistically 
determined temperature for path 39, row 30 for year 2000. 

The absolute difference between user defined and statistically determined Ts was 

never greater than 0.87 K (Table 9.2-1). The average seasonal absolute difference was 

found to be only 0.47 K. This average absolute error in TS of 0.47 K, when inserted into 

the dT = a*TS +b equation for the 11 images produced an average dT error of 0.27 K. 

This corresponds to an average seasonal error in sensible heat flux (H) of approximately 

9 W/m2. This estimate in H was made using an average aerodynamic surface resistance 

(rah) for the cold pixel of 30 s/m. This is a representative rah for an agricultural pixel with 

a wind speed of approximately 2 m/s at two meter height above the ground surface, and is 
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used solely for comparative purposes to show the approximate error introduced by 

statistical anchor pixel selection. The mean ET flux over the 11 images averaged about 

463 W/m2 over the cold pixels so that the error in H caused by the error in TS_cold was 

about 2 % of the ET at the cold pixel.  

Table 9.2-1 gives the difference between statistically derived cold pixel 

temperatures and the user defined temperatures. With such small differences between the 

two Ts selection methods the possibility of using statistics to locate the Ts used for the 

cold anchor pixel in METRIC processing proves promising. The statistical process 

assumes that the AOI includes sufficient pixels where ETrF ≈ 1.05, so that the cold pixel 

can be statistically identified. This may not be the case in winter and early spring, where 

full vegetation cover may not exist, or in non-irrigated areas in late summer. In this 

example, however; the estimate for March 16 was quite accurate due probably to some 

fields of winter wheat that were near full cover.   

 

Table 9.2-1 Comparison of user defined Ts_dem and statistically derived Ts for the cold 
anchor pixel throughout the growing season for path 39, row 30. 

Date Ts_dem (Statistics) Ts_dem (user) TS error (K)
3/16/2000 286.27 286.00 0.269
4/1/2000 293.10 292.23 0.867
6/4/2000 296.11 296.43 -0.322
6/20/2000 292.23 291.77 0.461
7/6/2000 293.54 293.72 -0.180
7/22/2000 299.70 300.51 -0.810
8/7/2000 298.46 298.86 -0.400
8/23/2000 299.06 298.53 0.523
9/8/2000 294.22 294.91 -0.683
9/16/2000 295.95 295.99 -0.036
10/18/2000 289.30 288.74 0.559  

    

9.3. Statistical Selection of the Hot pixel 

In the arid regions of the Western United States, agricultural areas are surrounded 

by vast amounts of desert. These desert areas can be at significantly higher temperatures 

than the hottest agricultural soils due to differences in soil structure, soil moisture, soil 
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heat flux, and shading of the surface by brush. The biggest difficulty in automatic hot 

pixel selection is therefore controlling the presence of and relative number of desert or 

otherwise very dry pixels within an image coupled with the corresponding higher 

temperatures. Often, large amounts of desert lead to statistical approaches yielding hot 

pixel temperatures higher than those expected from agricultural soils.  

A histogram of an elevation (lapse) normalized surface temperature is shown in 

Figure 9.3-1. The large peak in the histogram from approximately 317 K to 330K 

represents the large number of high temperature desert pixels within the image. The bare, 

dry agricultural pixels in the early June image averaged about 314 to 317 K, with the user 

defined temperature for this image date of 315.2 K. It is apparent from such histograms 

that any statistical based method for anchor pixel selection must include measures to 

avoid the inclusion of large areas of desert pixels.  This will insure that desert and similar 

(roadways) pixels will comprise a consistent percentage of the selected AOI.  

 

 
Figure 9.3-1 Temperature histogram for June 4, 2000 Landsat image (Created in ERDAS 
IMAGINE) 

Early in the growing season differences in temperature between desert and 

agricultural areas are not large. At this time of year, before the irrigation season, desert 

soils in southern Idaho have similar moisture content as agricultural soils due to 

antecedent moisture and therefore exhibit similar temperatures. As the irrigation season 
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begins and progresses throughout the season, the relative difference between the 

temperature of the desert and agricultural fields increases due to essentially no rainfall. 

Figure 9.3-2 shows this progression throughout the growing season for the year 2000. 

The plot shows the ratio: 

range

hot

Ts
TsTs

ratio
)( max −=  (48) 

where Tsmax is the maximum surface temperature within the image, Tshot is the 

temperature of the hot anchor pixel selected by an experienced METRIC user on the 

image date, and Tsrange is the range of temperatures for the given image date. This 

analysis was conducted on a small AOI within the Aberdeen study area which included a 

combination of desert and agricultural areas.  

Plot of (Tmax-Thot)/Trange with time for Path 39 
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Figure 9.3-2 Relative difference between hot desert pixels and the hottest agricultural 
soils throughout the growing season for Path 39 year 2000. 

Presumably the maximum temperature represents the temperature of the hot 

desert areas and the user defined hot anchor pixel represents the temperature of bare 

agricultural fields. The relationship shown in Figure 9.3-2 suggests that as the season 

progresses desert areas get hotter and hotter due to lack of wetting events and other 

factors (desert soil characteristics and vegetation shielding of the surface, Allen et al., 

2007a), thus creating a larger difference from agricultural soils which receive frequent 

irrigations. 
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It is this phenomenon which makes the automatic selection of the hot anchor pixel 

difficult. In order to over come this, two strategies are considered; careful delineation of 

the AOI to exclude hot desert pixels, and an adjustment to statistics for periods later in 

the season when the difference between desert and bare agricultural soils is more 

prevalent. The statistical delineation proposed by R. Allen and C. Kelly (2005, UI, 

personal communication) for the hot pixel is: 

Hot pixel statistics 

1. Select the lowest 10% of NDVI 

2. Then select the hottest 20% of TS from step (1) 

3. Take the average TS of the remaining sample  from step (2) as TS for the 

hot pixel 

It is noted again that the statistics described above are carried out on the same 

data analyzed for the cold pixel selection, sampled from the AOI of Figure 9.2-1. As 

expected a larger deviation from the user defined TS was found for the analysis of the hot 

pixel. Figure 9.3-3 shows this deviation throughout the growing season. As expected, 

later in the season, as the temperature of non-agricultural (desert, non-irrigated etc) pixels 

increases, the statistical procedure tends to over estimate the actual temperature of the hot 

pixel (bare, dry agricultural fields). Here the seasonal average deviation in temperature 

was approximately 2.2 K. This difference in temperature would produce an average error 

in the dT function of 0.9 K which, when using an average rah at the hot pixel of 20 s/m, 

produces an average error in the sensible heat flux (H) of 46 W/m2. Some of the error in 

H associated with this difference in hot pixel TS is compensated for during the METRIC 

calibration process (Allen et al., 2006). However, the error in Tshot would tend to ‘stretch’ 

the resulting ET surface over drier areas and would estimate too high of ET for the ‘true’ 

dry agricultural soil condition. The average error of 46 W/m2 averages about 10 % of the 

average ETr at the time of satellite overpass. It is also noted that the lower value of rah for 

the hot pixel than the cold pixel (20 versus 30 s/m) reflects the effect of boundary layer 

instability over the hot dry soil therefore reducing rah. 
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Figure 9.3-3 Comparison of statistically determined TS for hot pixel and user defined TS 
for path 39, row 30, year 2000. 

 

 

9.4. Path 40 year 2000 

Testing of the spatial applicability and transferability of the statistical anchor 

pixel selection method was carried out by conducting the derived statistical method on 

Path 40 images for the year 2000. The large agricultural area of the Magic Valley within 

Path 40 made it possible to analyze additional techniques used for the automatic pixel 

selection process. An area of interest was selected within the Magic Valley near the 

location of the weather station used for weather data. The selected AOI can be seen in 

Figure 9.4-1.  
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 Figure 9.4-1 Area of interest (outlined in blue) established within the Magic Valley for 
the testing of the Automatic anchor pixel selection process. 

  

The area of interest within Magic Valley was drawn so that boundaries of the AOI 

corresponded to roadways which in most cases are constructed on a mile by mile grid. 

Sampling grids were then established so that grid densities, in both the horizontal and 

vertical direction, were multiples of 200 meters. As seen in Figure 9.4-2 this provided the 

highest number of sampled pixels occurring within individual fields. This provided a total 

of over 5,000 pixels for the statistical analysis. All filtering of sampled data and statistics 

discussed above for Path 30 year 2000 were then applied for Path 40 year 2000 and the 

results are discussed below. Additional locations and methods (shapes) of AOI 

delineation were also tested as summarized in Appendix C.  
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Figure 9.4-2 Grid density for AOI delineation for Path 40 year 2000. 

Statistics for the cold pixel in Path 40 year 2000 provided similar results to those 

discussed above for Path 39 year 2000. Figure 9.4-3 shows the deviation in selected 

temperatures for the two methods throughout the growing season. The average absolute 

deviation was approximately 0.8 K with the highest deviation occurring on the first image 

date with an over estimation of approximately 1.8 K. The error on the first date, March 

15, was due to the presence of few fields having ETrF of 1.05 which is required for the 

cold pixel. Using the dT relationship (dT = a*TS + b) where the coefficients a and b were 

determined previously for each image date during the original METRIC processing 

(Tasumi, 2003), this difference in temperature would produce an approximate error of 

0.25 K in dT. This error produces an average error in the sensible heat flux (H) of 8 W/m2 

which was 1.7 % of the average ET flux (≈ 480 W/m2) for the cold pixel. Again this is 

assuming an average aerodynamic resistance (rah) of approximately 30 s/m for a cold 

vegetated pixel.  
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Path 40 Cold Pixel Stats for Central AOI
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Figure 9.4-3 Comparison of user defined cold pixel and statistically defined for Path 40 
year 2000 (User defined TS from UI METRIC processing, Tasumi 2003). 

The statistical selection of the hot anchor pixel used for METRIC calibration also 

provided similar results to those found in Path 39 year 2000. While the absolute deviation 

was slightly lower in the Path 40 analysis with a value of approximately 2 K/image, we 

again observe higher overestimation as the season progresses (Figure 9.4-4. The average 

difference in temperature would cause approximately 0.65 K of error in the dT at the hot 

pixel temperature which produces an average error in H of approximately 33 W/m2 or 7 

% of the average ETr (≈ 473 W/m2).  

With the increased overestimation in statistical TS observed in both Path 39 and 

Path 40 simulations, additional methods were pursued to improve the statistically derived 

hot pixel temperature. As discussed in section 9.3, the temperature difference between 

agricultural fields and non-agricultural fields (desert, non-irrigated pixels etc) increases 

throughout the growing season. As much of this phenomenon can be attributed to the 

occasional wetting of agricultural areas through irrigation (including bare soils), methods 

were sought to consider the influence of wetting events received by non-agricultural 

pixels through precipitation.   
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Path 40 Hot Pixel Stats for Central AOI
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Figure 9.4-4 Hot pixel temperature comparison between experienced user defined and 
statistically derived Ts. 

The lack of wetting events in non-agricultural (desert) areas during mid to late 

summer creates the larger difference between the temperature of desert and agricultural 

soils. In the FAO 56 manual Allen et al., (1998) found that this lack of well-watered 

conditions can cause differences in weather data collected over non-agricultural areas and 

data collected over agricultural (reference surface) areas. In that work they presented the 

use of the ratio of precipitation to reference ET (ETr) as an indicator to correct weather 

data obtained from areas deviating from the reference surface conditions. Figure 9.4-5 

shows the relationship between differences in minimum air and dew-point temperature 

measurements recorded at a range of weather stations and monthly precipitation/ETr 

ratios. As seen in the figure when more precipitation events (wetting events) occur and 

the ratio of precipitation to reference ET increases, the difference between measured 

daily minimum air temperature and dew-point temperature gets smaller and smaller. This 

is because, as discussed in Allen et al., (1998), the higher precipitation brings the non-

agricultural areas closer to the reference surface which is defined as well watered, 

actively growing (and therefore transpiring) healthy vegetation.  
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Figure 9.4-5 Difference between monthly minimum temperatures and dew point 
temperatures plotted against the ratio of monthly precipitation and monthly reference ET 
(Taken from FAO 56 Annex 6, Allen et al., 1998). 

Following Allen et al., (1998) the amount of precipitation occurring over the 

study area was utilized to adjust the statistically derived temperature of the hot pixel 

using a precipitation/ETr ratio. Both the precipitation and ETr were summed over the 60 

days prior to each image date to reflect the long term relative antecedent precipitation and 

slow diffusive evaporation. The ratio of the 60 day summed precipitation to the 60 day 

summed ETr was then plotted against the difference between the statistically determined 

surface temperature and the user defined temperature for the hot pixel. Figure 9.4-6 

shows the result of this comparison for path 40 as well as the linear relationship fitted to 

the data. Weather data were taken from the Twin Falls Agrimet station. The breakpoint of 

no bias correction when P/ETr > 0.2 suggests that when 60 day precipitation exceeds 

0.2ETr during the same period, residual evaporation from desert soils causes them to 

behave like agricultural soils.  

Statistically derived hot pixel temperatures were then adjusted using the linear 

relationship displayed in Figure 9.4-6. As seen in Figure 9.4-6 no adjustment is made for 

precipitation/ETr ratios above approximately 0.2 and equation 44 was utilized to compute 

an r2 of 0.80. Figure 9.4-7 shows the resulting comparison of the user defined TS for the 
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hot pixel and the statistically determined (following precipitation/ETr adjustment) 

throughout the growing season.  

 

Path 40 Precipitation/ETr ratio for the year 2000

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

0 0.2 0.4 0.6

Precipitation/ETr (prev ious 60days)

de
lta

 T
s_

de
m

 (K
)

y = -13x+2.6 , x < 0.2

R 2 = 0.80
y = 0 , x ≥ 0.2

 
Figure 9.4-6 Comparison of the Precipitation/ETr ratio for the 60 days immediately 
proceeding Image dates to the difference between statistically derived TS and the user 
defined TS of the hot pixel (Weather data measured near Kimberly Idaho). 

Using the precipitation/ETr adjustment procedure produced promising estimates 

of hot anchor pixel temperatures. The use of the precipitation adjustment reduced the 

total absolute error from 2 K to only 0.55 K. This corresponds to an average error similar 

to the error found in the cold pixel analysis of only 0.2 K in dT, which would produce an 

average error in the sensible heat flux (H) of approximately 9 W/m2 at the hot pixel. This 

error represents only 2% of the average ETr at the time of satellite images.  
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Path 40 Hot Pixel Stats for Central AOI using P/Etr ratio
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Figure 9.4-7 Hot pixel selection comparison with statistical method coupled with use of 
P/ETr ratio for correction due to desert heating. 

 

9.5. Application of Statistically Derived Anchor Pixels for METRIC Processing  

The estimates of error associated with the statistical selection of METRIC anchor 

pixels, discussed above were made using the calibration coefficients derived in the 

original METRIC processing of Path 39 and Path 40 for the year 2000.  However; the 

actual calibration constants would change based on the selection of the cold and hot 

anchor pixels. To further test the use of statistically derived anchor pixels for the 

METRIC calibration process, images for the year 2000 for Path 40 were reprocessed 

using the statistically derived anchor pixels and the resulting ETrF images compared with 

the original ETrF images processed by Tasumi, (2003) and reprocessed by Burnett and 

Allen, (2007, personal communication).  

The statistically derived temperatures for both cold and hot anchor pixels were 

associated with actual pixels within each Landsat image, prior to the METRIC 

processing. This was accomplished by applying a color scheme to the temperature image 

created from Landsat data as shown in Figure9.5-1 that identified TS ‘bands’ that 

contained the Tshot and Tscold values. 
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Figure 9.5-1 Surface temperature image colorization for the selection of individual pixels 
used as the cold and hot anchor pixels for METRIC processing of Path 40 year 2000. 

In Figure 9.5-1 both the surface temperature (left image) and a false color 

composite of the original Landsat 7 image (right image) are displayed. Surface 

temperature pixels colored in blue exhibited temperatures within the range of the 

statistically derived cold pixel and red pixels the temperature range of the hot pixel. Cold 

and hot anchor pixels were selected using this information as well as the albedo and 

NDVI for each image date. Anchor pixels were selected from pixels within0.2 K of the 

statistically determined temperatures for both the cold and hot pixel. Initially the pixel 

selected for the cold pixel was required to exhibit high NDVI (greater than ≈ 0.8) and an 

albedo within the range of 0.2 to 0.25. The hot pixel was also selected which exhibited 

low NDVI (less than ≈ 0.15), and an albedo between 0.18 to 0.25. Each of these criteria 

were used in all METRIC processing to best describe the conditions exhibited by well 

watered crop surfaces (cold pixel) and bare dry agricultural soils (hot pixel). 
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However, the accuracy of ET estimates (relative to manual calibration) using 

statistically derived TS for the cold and hot anchor pixels was found to be highly 

dependent upon the albedo of the pixel selected for the cold anchor pixel. The first 

simulations of METRIC using statistically derived cold and hot anchor pixels where 

albedo was selected for the cold pixel with values ranging from 0.2 to 0.25, found 

overestimation of seasonal ET compared to METRIC user calibrated ET estimates (user 

defined METRIC calibration chose albedo ranging from 0.16 to 0.24). The over 

estimation in seasonal ET represented approximately 3 to 6% of the total seasonal 

reference ET (ETr). Closer analysis of ETrF images for all image dates indicate that the 

accuracy associated with statistically calibrated METRIC processing depending heavily 

on the albedo of the chosen cold anchor pixel.  
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Figure 9.5-2 Seasonal ET comparison for 70 agricultural fields within the Magic Valley  
between standard METRIC processing and the statistically calibrated METRIC 
processing for the year 2000 with the albedo for the cold pixel used in the statistical 
calibration method ranging from 0.2 to 0.25. 

 

As discussed previously in chapter 3 surface albedo is the ratio of reflected 

radiation from the surface to the shortwave radiation incident at the ground surface. 
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Higher values of albedo for a given pixel within an image represent less energy at the 

surface available for ET. At first glance one might therefore expect METRIC simulations 

using higher albedo values for the cold pixel to predict less ET than if low albedo values 

are used. This is not the case however because by selecting a cold anchor pixel with a 

high albedo you are in turn causing all other pixels with characteristics similar to the cold 

pixel but having lower albedo to have higher ET (larger than the 1.05*ETr established for 

the cold pixel) than the reference.  Figure 9.5-3 shows this ‘stretching’ of the ET near the 

cold pixel, where we see that for high ETrF the diference between  the user calibrated 

METRIC and statistically calibrated METRIC gets more negative (increased over 

estimation) when the cold pixel albedo used for the statistical method is larger than the 

albedo used in standard calibration.  
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Figure 9.5-3 Difference in ETrF images using standard METRIC processing and 
METRIC calibrated by statistical selection of cold and hot anchor pixels for late July 
image. 

 

This increase in over estimation under these conditions (higher albedo at the cold 

pixel for the statistical method) further effects the ET estimation as the larger difference 

is applied to higher ETrF values (ET = ETrF*ETr). In the processing of both calibration 

methods it was observed that for the September 15, 2000 image date the albedo of the 
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cold pixels were nearly identical (manual calibration vs. statistical). On that image date 

the difference between ETrF images was very small compared to all other image dates 

(Figure 9.5-4). The range in differences in ETrF images was from 0.01 to -0.005 (total 

range of 0.015) compared to differences ranging from 0.1 to -0.1 (total range of 0.2) 

observed with the July 21, 2000 image (Figure 9.5-3).  
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Figure 9.5-4 Difference in ETrF images using standard METRIC processing and 
METRIC calibrated by statistical selection of cold and hot anchor pixels when albedo at 
the cold pixel condition and the hot pixel condition were the same. 

 

The effect of using an albedo at the cold pixel with a value less than the value 

used in METRIC standard user calibration is seen in Figure 9.5-6. It was observed that 

the albedo (albedo of cold pixel of 0.25) used in the statistical calibration at the cold pixel 

on June 3, 2000 was much larger than the user calibrated clod pixel albedo of 0.19. 

Differences between ETrF images under these conditions are seen in Figure 9.5-5. 

METRIC for this image date was reprocessed using the statistical calibration procedure 

with an albedo at the cold pixel of 0.17. Figure 9.5-6 shows that by choosing a cold 

anchor pixel closer to the albedo of the user calibrated cold pixel drastically reduces the 

range in differences between ETrF images (0.2 to 0.03 difference in ETrF). Also by 
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selecting the anchor pixel which had an albedo at the cold pixel less than that of the user 

calibration method gave only under estimation for that image date.  

June 3, 2000 difference between standard 
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Figure 9.5-5 Difference in ETrF images using standard METRIC processing and 
METRIC calibrated by statistical selection of cold and hot anchor pixels when albedo at 
the cold pixel condition was higher for the statistical calibration method. 
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Figure 9.5-6 Difference in METRIC methods when albedo at the cold pixel is selected so 
that it is lower than the albedo of user defined METRIC processing when albedo at the 
cold pixel condition was slightly smaller for the statistical calibration method (same 
pixels sampled as in Figure 9.5-5). 
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All twelve image dates were reprocessed using the statistically determined 

temperatures of the cold and hot anchor pixels as but using cold pixels exhibiting albedo 

values more closely related to those selected in the standard METRIC processing by 

Tasumi et al (2003, reprocessed by Allen and Burnett in 2007). The hot pixels used in 

this case were the same as those defined previously using the statistical selection process 

(albedo ranging from 20 to 26). Tables displaying temperature, albedo, NDVI, and other 

pertinent data of the cold and hot anchor pixels can be seen in Appendix D. Figure 9.5-7 

shows the comparison of resulting seasonal ET estimates from the same agricultural 

fields presented in Figure 9.5-2.  

Comparison of Seasonal ET (1-Mar to 31-Oct) from 
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Figure 9.5-7 Seasonal ET comparison between standard METRIC processing and 
METRIC processing using statistical calibration for 70 agricultural fields within the 
Magic Valley for the year 2000. 

While over estimation was still observed, the over estimation represents only 0.2 

to 2.9 % of the total seasonal ETr for the same time period (March 1 to October 31). Even 

with albedo selected within 0.05 of the cold pixel albedo for standard METRIC 

processing over estimation in seasonal ET was still observed. This could be in part 

explained by the fact that the largest over estimation occurs at high ETrF when 

statistically selected albedo at the cold pixel is higher than the standard user defined cold 
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pixel albedo, and this condition occurred for all July and August images when most crops 

are actively growing (and therefore at high ETrF, ET).  
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10.0 CONCLUTIONS AND RECOMENDATIONS 

10.1. Conclusions 

Large scale monitoring of seasonal ET fluxes from the agricultural areas of 

southern Idaho is currently accomplished using Landsat satellite imagery and Mapping 

Evapotranspiration at high Resolution with Internalized Calibration (METRIC). The 

overall objectives of this study were to 1) develop and test an evapotranspiration (ET) 

estimation method combining crop coefficients from satellite-based vegetation indices 

with water balance techniques for estimating the evaporation component of ET and 2) to 

examine methods for the automatic selection of the anchor pixels used in the METRIC 

calibration process.  

The use of Kcb-NDVI relationships coupled with procedures for estimating 

evaporation using water balance model techniques can assist water managers in the 

estimation of seasonal ET fluxes over agricultural areas of southern Idaho, when thermal 

satellite information is not available to supply more accurate energy balance based 

techniques. Reasonable estimates of seasonal ET can be obtained from universal Kcb-

NDVI relationships for agricultural areas thus; crop classification may not be required.  

The largest advantage of the vegetation index based water balance model is that 

the model does not rely on thermal satellite information. The availability of high 

resolution thermal satellite data used in the more precise energy balance based ET 

estimation methods, has been jeopardized by the failure of Landsat 7 in 2003. Seasonal 

ET estimates using the satellite based Kcb-NDVI relationship coupled water balance 

models were within ± 5 % of ET observations from the energy balance based METRIC 

model, for most crops within the Magic Valley of southern Idaho. Estimates of seasonal 

ET using the rooting specific to each crop type as well as crop specific Kcb-NDVI 

relationships better replicated METRIC observations in most cases.    

Statistical procedures can assist METRIC users in the selection of anchor pixels 

used in the internal calibration process. This calibration process is a vital component in 

METRIC applications if realistic estimates of ET are to be obtained. This statistical 
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procedure can reduce the uncertainty in ET estimates associated with the subjective user 

defined calibration for inexperienced users or users with varying levels of background in 

ET fluxes and radiation physics.  

Comparison of statistically calibrated METRIC results to standard user 

calibration, found that the albedo of the anchor pixels, used in the calibration process, can 

significantly alter the accuracy of ET estimates. Sensitivity analyses of albedo values 

confirm the need of narrowing the range of albedo values exhibited by anchor pixel 

candidates.  

 

10.2. Recommendations 

Water Balance Model 

Some additional analyses will be needed in the future to establish the applicability 

of the techniques discussed in this thesis for locations outside of southern Idaho. Future 

work should include the application and verification of these techniques for other 

agricultural crops as well as desert areas. The calibration process involved in crop 

specific simulations can be refined to better capture the effects of irrigation event and 

water management practices over the large areas contained within satellite images. This 

can be achieved by considering additional methods for irrigation season delineation, 

which would better mirror the actual irrigation season for crops such as potato and beans, 

that have very low Kcb values early in the year (simulated irrigation season tended to lag 

actual season), and grain crops that exhibit low NDVI late in the year when transpiration 

and irrigation can still occur (simulated irrigations tended to stop prior to typical 

irrigations for these crops).  

In many cases simulated irrigations tended to mirror irrigation frequency typical 

for surface irrigation systems. A high percentage of the irrigation systems within the 

Magic Valley are center pivots which typically have a higher irrigation frequency than 

other irrigation methods. Capturing the effects of the large number of high frequency 
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irrigation systems within the Magic Valley could account for some of the underestimation 

of the water balance model compared to METRIC observations.    

Future work should also examine additional methods for smoothing the 

evaporation component of ET to be added to the transpiration component since, in reality, 

the timing of this component is unknown. In this study smoothing was achieved by 

conducting multiple simulations for multiple individual fields based on crop type. Other 

possible methods include, but are not limited to, the use of averaging the evaporation 

component over simulations made for various NDVI ranges. The use of the water balance 

model may be useful, when coupled with METRIC, to ‘fill-in’ ET estimates during 

periods between image dates when rainfall occurs. 

Statistical calibration  

The statistical selection of anchor pixels used in METRIC calibration was fully 

tested for the year 2000 with path 40, row 30 Landsat 5 and 7 images which corresponds 

to the Magic Valley in southern Idaho. Future work should focus on the testing of 

statistical methods outside of southern Idaho to test the transferability of the procedure to 

areas with different crop and land use types (varying types on non-agricultural pixels, 

desert).  Currently the University of Idaho is testing METRIC applications in Colorado 

and Nebraska.  

The statistical calibration procedures presented in this thesis are based upon the 

surface temperature and amount of vegetation (NDVI) exhibited by the anchor pixels. 

Initial assumptions as well as final results suggest that other energy balance parameters 

such as surface albedo play a large role in the calibration accuracy of ET estimates from 

statistically calibrated METRIC processing. 
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APPENDIX 

A. Comparison of Kcb Curves with Literature 

Alfalfa Kcb comparison in the Magic Valley for
the year 2000
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Figure 10.21 Comparison of General Kcb curves from NDVI with Allen and Robison 
(2007). 
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Alfalfa Kcb comparison in the Magic Valley for 
the year 2000
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Figure A.2 Comparison of crop specific Kcb curves developed from NDVI to Allen and 
Robison (2007) 
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B. STATISTICS FOR “COLD” PIXEL SELECTION 

The Study area is the agricultural area surrounding American Falls reservoir near 

Aberdeen in southern Idaho. Landsat images corresponding to the path 39 and row 30 

were used for the analysis. Three sample sites were created within the Aberdeen study 

area and sampled using a 100 X 100 point grid. This gave a combined data set of 30,000 

pixels for analysis. Separate sample areas were created to maximize the number of pixels 

that would be evenly spaced and within agricultural areas. The IMAGINE created grid 

yields X and Y coordinates such that 100 evenly spaced grid points were located in both 

the x and y direction of each sample area. The goal of the first search was to delineate 

AOI’s that included approximately 10% desert pixels. The three AOI generated can be 

seen in the figure below. The three sample areas included a total surface area of 230 

square miles (area 1 = 70 mi2, area 2 = 42 mi2, and area 3 = 118 mi2). 

 

Sample area 3 

Sample area 2 

Sample area 1 

Figure 10.2B.1 Rectangular AOI's (outlined in dashed black and white) for the statistical 
selection of cold and hot anchor pixels for path 39, row 30, year 2000. 
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Several different Statistical calculations were carried out to examine locating a 

representative cold pixel within the image. As described above, Landsat images were 

sampled for the year 2000 over path 39 row 30. The information used in the analysis 

included NDVI, Ts_dem, and ETrF images generated using the METRIC model 

developed by Dr. Allen and the University of Idaho. The first method was to follow the 

statistics determined by Carlos Kelly, under the guidance of R.G. Allen and M. Tasumi. 

Methodology 1 

1. Select pixels with the top 5% of highest NDVI values 

2. From the selected top 5% NDVI select the coldest 20% of Ts_dem 

3. From the resulting sample take the average Ts_dem as the Statistically 

derived Ts_dem for the cold pixel 

Variations in this procedure process were then conducted by altering step 2 as described 

above. The two additional variations of step two are as follows: 

1. From the selected top 5% NDVI select the pixels with temperature in the 

range of the lowest 10 to 30% 

2. From the selected top 5% NDVI select the pixels with temperature in the 

range of the lowest 20 to 40% 

Methodology 2 

Next the statistics were altered slightly to examine a slightly different range in 

NDVI. This was done by rejecting the highest values of NDVI and then conducting 

similar temperature analysis as above. The methodology can be seen bellow. 

1. Select pixels with the top 5 to 10% of highest NDVI values 

2. From the selected top 5% NDVI select the coldest 20% of Ts_dem 
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3. From the resulting sample take the average Ts_dem as the Statistically 

derived Ts_dem for the cold pixel 

Variations in this procedure process were then conducted by altering step 5 as described 

above. The Two additional variations of step 5 are as follows: 

1. From the selected top 5 to 10% NDVI select the pixels with temperature in 

the range of the lowest 10 to 30% 

2. From the selected top 5 to 10% NDVI select the pixels with temperature in 

the range of the lowest 20 to 40% 

Results 

The two methods explained above yielded a total of six solutions for the cold 

pixel statistically determined Ts_dem. Graphs displaying the amount of variation 

between the statistically determined Ts_dem cold and the user defined Ts_dem cold can 

be seen below. Analysis of the total amount of absolute deviation from the user defined 

Ts_dem and the statistically determined Ts_dem for the cold pixel, suggests that the final 

methodology presented by Allen et al. (2004) provides the best statistical method for 

replicating the user defined Ts_dem for these image dates. It is important to note that the 

statistics presented below (Table B.1 column 4) do not match those presented for the path 

39 results presented in Figure 9.2-1 and discussed in section 9.2 of this text, because 

resulting statistics of Table B.1 were obtained from the three AOI’s shown in figure B.1. 

Also the sampled pixels from for this analysis were not filtered for the coefficient of 

variation (CV) of NDVI (thermal contamination) as were the data presented in Figure 

9.2-1.  
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Table 10.2B.1 Difference in cold anchor pixel temperature statistically determined and 
user defined for six different combinations of statistical selection processes. 

Highest NDVI Top 5% NDVI Top 5 to 10% NDVI
Coldest Ts_dem 10 to 30% 20 to 40% 20% 10 to 30% 20 to 40% 20%

Date  TS error (K) TS error (K) TS error (K) TS error (K)  TS error (K) TS error (K)
3/16/2000 1.32 2.20 -0.14 2.96 3.89 1.35
4/1/2000 2.16 3.20 1.31 4.96 5.63 3.84
5/3/2000* -2.38 -2.15 -2.74 -0.50 -0.18 -0.62
6/4/2000 0.43 0.74 0.03 0.57 0.90 0.18

6/20/2000 0.67 0.91 0.33 1.81 1.76 1.91
7/6/2000 1.03 1.04 0.92 0.19 0.47 -0.22

7/22/2000 -0.49 -0.25 -0.80 -0.29 -0.01 -0.67
8/7/2000 0.58 0.93 0.03 0.33 0.72 -0.17

8/23/2000 1.62 1.84 1.43 2.42 2.56 2.38
9/8/2000 -0.39 -0.13 -0.79 1.31 1.34 1.30

9/16/2000 0.93 1.14 0.64 1.25 1.54 0.88
10/18/2000 1.13 1.49 0.46 1.91 2.21 1.25

Average error (K/image) 0.90 1.16 0.57 1.50 1.75 1.18
*  This early May image was ommitted from the analysis due to significant cloud cover over the study area (average error excludes 5-3-2000)  
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Figure 10.2B.2 Comparison of varying statistics for cold pixel selection looking at the 
highest 5 % of NDVI. 
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Top 5% to 10% NDVI and the 10% to 30% coldest 
pixels
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Figure B.3 Comparison of results from several statistical methods for the selection of 
cold anchor pixels looking at the highest 5 to 10% NDVI. 

 

The largest difference between statistically derived values and those determined 

by the user were observed in the April 1st and May 5th images. Further investigation 

showed that the user defined cold pixel for the image data 5/03/2000 was located far from 

the study area west of Burley Idaho. Also on this date the image had significant cloud 

coverage over the two upper sample sites and therefore only 10,000 pixels from Sample 

area 1 were used. Examination of the Ts_dem image also showed that for this date a 

significant number of fields in the Aberdeen area were at a much cooler temperature than 

in the Burley area where the user defined cold pixel was located. The combination of 

these observations led to the inability of the statistically methods to replicate this user 

defined Ts_dem, and in some cases some doubt on the accuracy of the user defined 

calibration.  
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Cold pixel Conclusions  

From the above analysis we conclude it best to stay with the statistics previously 

determine by Kelly et al. The statistics are repeated below.  

1. Select pixels with the top 5% of highest NDVI values 

2. From the selected top 5% NDVI select the coldest 20% of Ts_dem 

3. From the resulting sample take the average Ts_dem as the Statistically 

derived Ts_dem for the cold pixel 
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C. SENSITIVITY TO AOI DELINEATION  

One of the major objectives in obtaining a statistical method for the selection of 

cold and hot anchor pixels is to have a method which provides consistent results between 

different users. Results of this study indicate that the delineation of an area of interest 

(AOI) from which to sample and perform statistics was the most important for the hot 

anchor pixel selection methods. The first simulations conducted in this study used 

carefully selected AOI delineated within agricultural areas, at least 1 mile from non-

agricultural (desert, city etc.) pixels. Figure C.1 shows the carefully selected AOI’s which 

excluded major cities within the Magic Valley.  

 

 
Figure C.1 Carefully delineated agrcultural AOI's for the statistical selction of cold and 
hot anchor pixels for path 40, row 30, year 2000. 
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Central AOI 

Figure C.2 Rectangular agricultural AOI's for the statistical selection of the cold and hot 
anchor pixels for path 40, row 30, year 2000. 

 

The sensitivity of AOI selection was then tested by performing the statistical 

selection process on AOI’s selected quickly using simple rectangular delineation (Figure 

C.2). The resulting temperatures for hot anchor pixels using all 5 areas outlined in blue in 

figure C.2 are presented in Figure C.3. The average absolute difference in the temperature 

selected for the hot pixel using the statistical method and the user defined temperature 

was about 3 K. The statistics were then conducted using only the small central area 

(shown in Figure C.2) and the average absolute deviation reduced to about 2 K. While the 

quick selection of agricultural areas from which to perform the statistical methods of 

obtaining the temperature of the hat anchor pixel provides reasonable results, it was 

found that as more care was taken to exclude non-agricultural pixels (desert), statistical 

selection of the hot pixel gave less deviation from experienced user defined hot pixels.   
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Hot Pixel selection: 10% lowest NDVI_ats and then the 
20% hottest Ts_dem for the entire MV AOI
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Figure C.3 Comparison of the statistically selected hot pixel for path 40 with the user 
defined hot anchor pixel using multiple AOI's throughout the Magic Valley. 

Path 40 Hot Pixel Stats for Central AOI
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Figure C.4 Comparison of the statistically selected hot pixel for path 40 with the user 
defined hot anchor pixel using single AOI (central AOI Figure 10.2-2) throughout the 
Magic Valley. 
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D. METRIC ANCHOR PIXEL DATA PATH 40, ROW 30, YEAR 

2000  
 
Table D.1 Anchor pixel characteristics for pixels selected by experienced METRIC user 
for path 40, row 30, year 2000. 

METRIC with experienced user calibration
Date Pixel X Y ETrF assigned ETrF calculated Albedo NDVI_TOA LAI Ts (K) Ts_dem (K)

3/15/2000 Cold 447809 166501 0.75 0.75 0.20 0.79 4.34 283.29 282.67
Hot 471201 161200 0.336 0.34 0.19 0.12 0.01 289.94 289.89

4/8/2000 Cold 447809 166501 0.8 0.80 0.17 0.81 4.48 293.92 293.30
Hot 474433 152238 0 0.00 0.23 0.10 0.01 303.93 304.26

5/2/2000 Cold 484115 156941 1.05 1.04 0.16 0.73 3.05 289.92 290.39
Hot 483205 157801 0.072 0.07 0.23 0.14 0.02 304.75 305.25

6/3/2000 Cold 483681 156897 1.05 1.05 0.19 0.84 5.29 294.66 295.17
Hot 456272 156755 0 0.00 0.28 0.10 0.01 314.07 314.26

6/19/2000 Cold 483398 154082 1.05 1.04 0.19 0.84 5.33 289.92 290.60
Hot 455154 164124 0 0.00 0.25 0.10 0.01 305.71 305.23

7/5/2000 Cold 457318 154924 1.05 1.05 0.18 0.79 4.26 294.66 294.91
Hot 455154 164124 0 0.00 0.24 0.16 0.03 315.86 315.38

7/21/2000 Cold 483940 150561 1.05 1.03 0.18 0.81 4.42 298.22 298.76
Hot 495543 145725 0 0.00 0.29 0.17 0.05 317.63 318.42

8/14/2000 Cold 484030 150788 1.05 1.04 0.18 0.82 4.77 298.11 298.65
Hot 454893 162127 0 0.00 0.32 0.19 0.07 315.87 315.53

8/22/2000 Cold 459869 151133 1.05 1.04 0.19 0.73 3.42 294.66 295.46
Hot 469584 161913 0 0.00 0.27 0.12 0.02 313.62 313.53

9/7/2000 Cold 495408 151650 1.05 1.05 0.24 0.82 5.23 289.92 290.58
Hot 469584 161913 0.191 0.19 0.26 0.12 0.02 302.81 302.71

9/15/2000 Cold 469871 154828 1.05 1.05 0.21 0.77 4.20 298.11 298.20
Hot 455154 164124 0 0.00 0.23 0.14 0.03 316.40 315.92

10/17/2000 Cold 453221 176371 1.05 1.05 0.21 0.79 4.27 287.66 286.90
Hot 467611 163197 0.220 0.22 0.23 0.10 0.01 295.11 294.86  

 
Table D.2 Anchor pixel characteristics for pixels selected using statistical procedures for 
path 40, row 30, year 2000 METRIC processing. 

METRIC with statistical calibration and larger albedo at the cold anchor pixel
Date Pixel X Y ETrF assigned ETrF calculated Albedo NDVI_TOA LAI Ts (K) Ts_dem (K)

3/15/2000 Cold 469082 158286 0.75 0.75 0.21 0.74 3.68 284.42 284.38
Hot 497081 141932 0.336 0.33 0.22 0.11 0.01 288.85 289.86

4/8/2000 Cold 472348 162645 0.8 0.80 0.18 0.72 3.04 294.53 294.36
Hot 464442 154102 0 0.00 0.25 0.12 0.01 305.06 305.18

5/2/2000 Cold 476561 153116 1.05 1.05 0.23 0.77 4.23 289.38 289.85
Hot 502133 151014 0.072 0.07 0.25 0.11 0.01 303.78 304.73

6/3/2000 Cold 482592 149942 1.05 1.06 0.25 0.84 5.87 294.66 295.21
Hot 506159 146644 0 0.00 0.23 0.22 0.09 313.60 314.49

6/19/2000 Cold 479983 150484 1.05 1.05 0.23 0.82 5.32 289.92 290.45
Hot 495567 153861 0 0.00 0.26 0.15 0.03 304.75 305.49

7/5/2000 Cold 476939 158275 1.05 1.05 0.23 0.85 5.82 295.18 295.51
Hot 447064 159087 0 0.00 0.25 0.16 0.04 316.75 316.96

7/21/2000 Cold 475809 150783 1.05 1.06 0.22 0.79 4.53 297.22 297.64
Hot 505855 137737 0 0.00 0.22 0.20 0.06 318.50 319.53

8/14/2000 Cold 469684 154786 1.05 1.06 0.21 0.80 4.74 296.93 297.02
Hot 479063 149391 0 0.00 0.24 0.14 0.02 316.40 316.88

8/22/2000 Cold 443582 162656 1.05 1.05 0.23 0.79 4.74 295.18 295.07
Hot 494805 147351 0 0.00 0.26 0.13 0.02 312.26 313.03

9/7/2000 Cold 476886 152344 1.05 1.05 0.25 0.84 5.77 290.99 291.41
Hot 471168 157174 0.191 0.19 0.25 0.14 0.02 302.80 302.89

9/15/2000 Cold 469782 154838 1.05 1.05 0.21 0.75 3.75 298.11 298.20
Hot 489081 147736 0 0.00 0.22 0.10 0.01 315.37 315.97

10/17/2000 Cold 472770 159512 1.05 1.08 0.23 0.80 4.78 288.30 288.31
Hot 466851 151538 0.220 0.22 0.25 0.14 0.02 295.11 295.32  
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Table D.3 Anchor pixel characteristics for statistical selection using tighter range fo 
albedo values at the cold pixel for path 40, row 30, year 2000. 

METRIC with statistical calibration and albedo at the cold anchor pixel similar to METRIC/user calibration
Date Pixel X Y ETrF assigned ETrF calculated Albedo NDVI_TOA LAI Ts (K) Ts_dem (K)

3/15/2000 Cold 469082 158286 0.75 0.75 0.21 0.74 3.68 284.42 284.38
Hot 497081 141932 0.34 0.33 0.22 0.11 0.01 288.85 289.86

4/8/2000 Cold 472348 162645 0.80 0.80 0.18 0.72 3.04 294.53 294.36
Hot 464442 154102 0.00 0.00 0.25 0.12 0.01 305.06 305.18

5/2/2000 Cold 511008 142571 1.05 1.05 0.18 0.77 3.83 289.38 290.27
Hot 502133 151014 0.07 0.07 0.25 0.11 0.01 303.78 304.73

6/3/2000 Cold 505474 145947 1.05 1.05 0.18 0.81 4.64 294.14 295.03
Hot 506159 146644 0.00 0.00 0.23 0.22 0.09 313.60 314.49

6/19/2000 Cold 509915 170968 1.05 1.05 0.18 0.81 4.69 289.92 290.50
Hot 495567 153861 0.00 0.00 0.26 0.15 0.03 304.75 305.49

7/5/2000 Cold 493932 161827 1.05 1.05 0.18 0.80 4.55 294.66 295.25
Hot 447064 159087 0.00 0.00 0.25 0.16 0.04 316.75 316.96

7/21/2000 Cold 456515 184672 1.05 1.05 0.19 0.82 4.76 298.22 297.80
Hot 505855 137737 0.00 0.00 0.22 0.20 0.06 318.50 319.53

8/14/2000 Cold 474757 150770 1.05 0.18 0.79 4.28 296.93 297.27
Hot 479063 149391 0.00 0.00 0.24 0.14 0.02 316.40 316.88

8/22/2000 Cold 456519 183242 1.05 1.05 0.19 0.78 4.09 295.69 295.22
Hot 494805 147351 0.00 0.00 0.26 0.13 0.02 312.26 313.03

9/7/2000 Cold 492882 162975 1.05 1.05 0.18 0.80 4.27 290.99 291.61
Hot 471168 157174 0.19 0.19 0.25 0.14 0.02 302.80 302.89

9/15/2000 Cold 469782 154838 1.05 1.05 0.21 0.75 3.75 298.11 298.20
Hot 489081 147736 0.00 0.00 0.22 0.10 0.01 315.37 315.97

10/17/2000 Cold 475173 161758 1.05 1.05 0.22 0.82 4.88 288.30 288.39
Hot 466851 151538 0.22 0.22 0.25 0.14 0.02 295.11 295.32  
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