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[1] An equation is derived through which the variance of predictive error of a calibrated
model can be calculated. This equation has two terms. The first term represents the
contribution to predictive error variance that results from an inability of the calibration
process to capture all of the parameterization detail necessary for the making of an
accurate prediction. If a model is ‘‘uncalibrated,’’ with parameter values being supplied
solely through ‘‘outside information,’’ this is the only term required. The second term
represents the contribution to predictive error variance arising from measurement noise. In
an overdetermined system, such as that which may be obtained through ‘‘parameter
lumping’’ (e.g., through the introduction of a spatial zonation scheme), this is the only
term required. It is shown, however, that parameter lumping is a form of ‘‘implicit
regularization’’ and that ignoring the implied first term of the predictive error variance
equation can potentially lead to underestimation of predictive error variance. A model’s
role as a predictor of environmental behavior can be enhanced if it is calibrated in such a
way as to reduce the variance of those predictions which it is required to make. It is shown
that in some circumstances this can be accomplished through ‘‘overfitting’’ against
historical field data. It can also be accomplished by giving greater weight to those
measurements which carry the greatest information content with respect to a required
prediction. This suggests that a departure may be necessary from the custom of using a
single ‘‘calibrated model’’ for the making of many different predictions. Instead, model
calibration may need to be repeated many times so that in each case the calibration process
is optimized for the making of a specific model prediction.
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1. Introduction

[2] Models are often used to make predictions of
environmental behavior. Used in that role, they support
environmental management. A vital aspect of the model
construction process is the calibration phase. During this
phase, model parameters are adjusted until the model’s
replication of historical field measurements is judged to
be ‘‘reasonably good.’’ It is then assumed that this
constitutes sufficient justification to use the model to make
predictions and that those predictions will also be reason-
ably good.
[3] Unfortunately, even predictions made by a model that

matches historical data perfectly may be considerably in
error. In fact, a model’s predictive uncertainty will only be
reduced by calibration if the information content of the
calibration data set is able to constrain those parameters that
have a significant bearing on that prediction. Thus, for
example, if a model is built to make predictions of contam-
inant transport, then its performance in this regard will be
better served if it is calibrated against historical contaminant
concentration data than if it is calibrated solely against
groundwater heads [see, e.g., Harvey and Gorelick, 1995;
Poeter and Belcher, 1991; Frederick and Doherty, 2003;
Franssen et al., 2003; Feyen et al., 2003]. For the same

reason, Tiedeman et al. [2003] assert that model predictive
uncertainties may not necessarily decrease with calibration
to a larger data set.
[4] Model predictive uncertainty arises from a number of

sources. In the present paper inadequacies in model
equations, or in the numerical implementation of those
equations, will be neglected, and only those pertaining to
its parameterization will be considered.
[5] Information on model parameters comes from two

sources. The first of these consists of inferences of system
properties based on knowledge of the materials of which the
system under study is composed, often supplemented by
direct measurements of system properties at a limited
number of locations. The latter are often accompanied by
noise so that parameter inferences drawn from them are
subject to a possibly large margin of uncertainty. Because
such ‘‘prior information’’ on parameter values is often
vague, point-based, and uncertain, it is often best expressed
in stochastic terms; for models such as groundwater models
where parameterization is spatially based, geostatistical
characterizations of hydraulic properties are thus often
employed. The second source of knowledge on model
parameters arises from historical measurements of system
state. This is a more indirect form of knowledge of system
properties, the information content of which is ‘‘tapped’’
during the model calibration process. Unfortunately, this
information is often contaminated by noise; thus parameter
values inferred from such data have a stochastic component
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that originates in the uncertainty associated with field
measurements as well as in so-called ‘‘structural noise,’’ a
term used to describe various unavoidable forms of model
inadequacy. Another problem with inferring parameter
values from field measurements is that such measurements,
like direct measurements of system properties, are often
sporadic in both space and time. Hence there is an upper
limit to the level of parameterization detail that can be
inferred from them; see Backus and Gilbert [1969], Menke
[1984], Kitanidis [1997], Guadagnini and Neuman [1999],
and Gorokhovski [1996] to mention just a few discussions
of this important subject.
[6] Bayes theorem provides the means to assimilate these

two sources of information on model parameters into a
‘‘posterior parameter distribution’’ that reflects both the
constraining effects of the calibration process and knowl-
edge of parameter values that originates from outside of this
process. Model predictive probabilities can then be evalu-
ated using the relationships between model parameters and
model predictive outputs encapsulated in the model. If
necessary, such an analysis can include geostatistical
characterizations of prior parameter uncertainty [see, e.g.,
Woodbury and Ulrich, 2000; Woodbury and Rubin, 2000,
and references therein]. A non-Bayesian, but nevertheless
effective, means of constraining geostatistical characteriza-
tions of parameter spatial variability such that historical
measurements of system state are respected by the model
involves the ‘‘bending’’ or ‘‘warping’’ of stochastic seed
fields, thus forcing these fields to satisfy calibration con-
straints. For examples of this methodology, see RamaRao et
al. [1995], LaVenue et al. [1995], Gómez-Hernández et al.
[2003], and Doherty [2003].
[7] An alternative methodology for analyzing model

predictive uncertainty is presented in this paper. Use of this
methodology is based on the premise that a model has been
‘‘calibrated’’ against a set of field measurements as a
precursor to its deployment for making predictions of future
system behavior, this being the most common strategy for
using models in environmental management. It is further
assumed that calibration takes place as an underdetermined
inverse problem. This strategy allows a model to employ a
level of complexity that is sufficient to represent all
processes on which a prediction of interest depends.
While parameters pertaining to that complexity may not
be uniquely estimated, it is demonstrated herein that full
characterization of predictive error variance requires that
this complexity be represented. The theory is then extended
to overdetermined parameter estimation (applicable, for
example, where a model domain is subdivided into a small
number of zones of piecewise parameter constancy in
accordance with the principle of parsimony). It is demon-
strated that estimates of model predictive error variance
made as an adjunct to model calibration based on this
principle can be seriously flawed unless the effects of such
system simplification are taken into account in making these
estimates.
[8] Solution of an underdetermined inverse problem is

possible only if some regularization strategy is employed.
The use of regularized inversion in the context of ground-
water model calibration has been discussed by a number of
authors, including Vasco et al. [1997], Clemo et al. [2003],
and Doherty [2003]. Software such as PEST [Doherty,

2004] is freely available for its implementation. Through
the use of regularized inversion, simplifications in param-
eterization necessary for the achievement of numerical
stability of the inverse problem are undertaken by the
parameter estimation process itself rather than through
manual simplification as a precursor to that process. This
allows maximum information content to be extracted from a
given calibration data set.
[9] The discussion begins in section 2.1 by exploring

model predictive uncertainty in contexts where param-
eterization is unassisted by calibration. After a brief dis-
cussion of regularized inversion, exploration of predictive
uncertainty is extended to accommodate the imposition of
calibration constraints on parameter values. Through an
analysis of the equations so derived, some important points
regarding the role of model calibration in reducing (or not
reducing) model predictive uncertainty are discussed. With
these points in mind the discussion then turns to how the
model calibration process can be made to better serve the
model predictive process, particularly with regard to
the assignment of ‘‘measurement weights’’ to elements of
the calibration data set. Finally, some of the concepts
developed in the analysis are applied to a synthetic case
to demonstrate their use.
[10] It must be pointed out that the equations derived in

section 2.3 are based on an assumption of model linearity.
Most models, of course, are nonlinear; hence these equa-
tions will be only approximations in many cases. Neverthe-
less, they are useful for the contribution that they make to
our understanding of the calibration process. Furthermore, it
is hoped that their use can extend farther than this to a
semiquantitative analysis of calibration outcomes. Where
such an analysis seeks ordering relationships rather than
absolutes (e.g., in determining the relative contribution to
uncertainty made by different parameter groups or the
relative reduction in uncertainty that can be accrued through
acquisition of different types of supplementary data), con-
clusions drawn through application of these equations are
likely to be quite robust, notwithstanding the nonlinear
nature of a model to which they may be applied.

2. Theory

2.1. Linear Predictive Uncertainty Analysis for an
Uncalibrated Model

[11] Suppose that the (m � 1) vector p contains the values
of parameters used by a model. Unless these values are
accurately known at all places within a model domain, they
must be described in probabilistic terms. Let the covariance
matrix of p be denoted as C(p). Let s (a scalar) designate a
prediction made by the model; let the sensitivities of this
prediction to model parameters be represented by the vector
y. Then s is calculable using the relationship

s ¼ ytp; ð1Þ

where the ‘‘t’’ superscript denotes the transpose operation.
(Note that in this, and subsequent equations, parameter and
prediction offsets are ignored for the sake of simplicity so
that a p of 0 results in a zero-valued prediction. Thus p can
be considered to represent parameter perturbations from
some known average value, while s can be considered to
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represent the resulting perturbation of the model prediction;
this makes no difference to the equations and concepts
derived in this section and in sections 2.2–2.6.) Through
basic matrix manipulation it is easily shown that the
variance of s (i.e., ss

2) is given by

s2s ¼ ytC pð Þy: ð2Þ

Equation (2) was used by El Harrouni et al. [1997] in
calculating output uncertainties for their dual reciprocity
boundary element method groundwater model on the basis
of spatially correlated model parameters.

2.2. Regularized Inversion

[12] ‘‘Inversion’’ is the process by which model param-
eter values are inferred from measurements of system state
by matching model outputs to these measurements. In the
discussion which follows these inferred parameter values
are designated as p̂ to distinguish them from ‘‘true’’ model
parameters p. Much of the purpose of this study is to
quantify the difference between these two. (Note that the
difference between ‘‘model parameters’’ and ‘‘system prop-
erties’’ that arises from the fact that even the most complex
model is a simplification of reality is ignored in this study.
Hence, for the present purpose the elements of p can also be
thought of as representing true system properties, of which
the elements of p̂ are their inferred equivalents.)
[13] Let the (assumed linear) relationship between the m

model parameters p̂ and n model outputs o be represented
by the matrix equation

Xp̂ ¼ o; ð3Þ

where X is the model ‘‘sensitivity’’ or ‘‘Jacobian’’ matrix.
Let h be a vector of field measurements corresponding to
the model output vector o; h is expressible as

h ¼ Xpþ EEE; ð4Þ

where, as stated above, p represents the true parameters of
the model (which we will never know) and E represents
measurement and structural noise associated with h. Let the
covariance of this noise be represented by the n � n matrix
C(EEE); for better or for worse this is normally assumed to be a
diagonal matrix.
[14] Let the extent of model-to-measurement misfit be

represented by an objective function F defined as

F ¼ Xp̂� hð ÞtQ Xp̂� hð Þ; ð5Þ

where Q is a positive definite ‘‘cofactor matrix.’’ This is
normally chosen to be proportional to the inverse of C(EEE),
that is,

C EEEð Þ ¼ s2hQ
�1; ð6Þ

where the constant of proportionality sh
2 (the so-called

‘‘reference variance’’) can be estimated through the
calibration process as

s2h ¼ F= n� mð Þ; ð7Þ

where F is the objective function corresponding to an
acceptable level of model-to-measurement fit.

[15] F of equation (5) is minimized when

XtQXp̂ ¼ XtQh: ð8Þ

If the matrix XtQX is not of full rank and the inverse
problem is thus underdetermined, there is no unique
solution to equation (8).
[16] In highly parameterized contexts it is often possible

to find parameter sets p̂ which reduce F to almost zero,
resulting in exquisite fits between model outputs and field
measurements. However, achieving such excellent fits just
because they are possible is not necessarily good practice,
for this does not take into account the fact that measure-
ments are contaminated by noise. Unrealistic parameter
values, and high levels of parameter spatial variability, are
often the outcomes of such overfitting. Nevertheless, with
due account taken of measurement noise the modeler is
justified in seeking a suitably low level of model-to-mea-
surement misfit and can thus define an appropriate objective
function Fn that reflects the measurement and structural
noise content of the observation data set on which calibra-
tion is based and seek a p̂ which satisfies

Xp̂� hð ÞtQ Xp̂� hð Þ ¼ Fn: ð9Þ

Whether or not XtQX is of full rank, the solution of
equation (9) is nonunique if Fn is greater than the
minimized objective function. Thus it must be solved
through some kind of regularized inversion process. The
present discussion focuses on ‘‘truncated singular value
decomposition’’ as a regularization mechanism. However,
the conclusions, and many of the equations, derived in
this section and section 2.3 are just as applicable to
other regularization methods such as ‘‘constrained
minimization regularization,’’ otherwise known as ‘‘Ti-
khonov regularization.’’
[17] Singular value decomposition (SVD) can be used to

determine the eigenvalues and eigenvectors of XtQX,
whether or not this matrix is of full rank. Thus

XtQX ¼ VEVt; ð10Þ

where V is the matrix of eigenvectors of XtQX and E is a
diagonal matrix of eigenvalues of XtQX. Where XtQX has
less than full rank, some of the eigenvalues in E are zero; in
fact, E has as many zero-valued eigenvalues as the rank
deficiency of XtQX. Because XtQX is positive semidefinite,
its eigenvalues are real, and its eigenvectors are orthogonal.
Thus

Vt ¼ V�1: ð11Þ

Let V be characterized as

V ¼ V1V2½ �; ð12Þ

where V1 contains eigenvectors corresponding to the k
largest eigenvalues of XtQX and V2 contains the remaining
eigenvectors, including those whose eigenvalues are zero.
In order to obtain a unique solution for p̂ at an acceptable
level of model-to-measurement misfit, let all eigenvectors
after the kth be assigned a value of zero (hence the term
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‘‘truncated’’ in the description of this regularization meth-
odology). Premultiplication of equation (8) by V1

tV1E1
�1V1

t

then results in

Vt
1p̂ ¼ E�1

1 Vt
1X

tQh: ð13Þ

In equation (13), E1 is the diagonal matrix of pretruncation
eigenvalues of XtQX (all of which are nonzero). The
elements of the vector V1

t p̂ are the inner product of a
parameter solution vector with each of the eigenvectors
contained in V1. Thus equation (13) solves for the projection
of solutions of equation (8) onto the subspace of parameter
space spanned by the eigenvectors contained in V1. Because
E1 has no diagonal elements equal or close to zero (which is
ensured if k is selected low enough), a stable solution to the
regularized inversion problem has been obtained:

p̂ ¼ V1E
�1
1 Vt

1X
tQh: ð14Þ

In forming equation (14) we have slightly adjusted
our characterization of p̂ to be V1V1

t p̂, this being the
(unique) V1 subspace parameter vector corresponding to
the vector components calculable through equation (13).
Thus the m-dimensional inverse problem has been trans-
formed into a k-dimensional inverse problem confined to the
subspace of parameter space spanned by V1. Furthermore,
by choosing k appropriately a good, but not excessively
good, fit can be obtained between model outputs and field
data. Normally, k is chosen such that (9) is approximately
obeyed.
[18] In general, eigenvectors of XtQX (i.e., columns of

V) corresponding to high eigenvalues show low spatial
variability within the model domain, whereas those
corresponding to low eigenvalues tend to show high vari-
ability [see, e.g., Wiggins et al., 1976]. Thus the truncated
SVD solution process tends to select smooth solutions to
the inverse problem, reflecting the inherent incapacity of a
calibration data set to furnish fine system detail in most
modeling contexts.

2.3. Linear Predictive Uncertainty Analysis for a
Calibrated Model

[19] If equation (4) is substituted into equation (14), we
obtain

p̂ ¼ V1E
�1
1 Vt

1X
tQ Xpþ EEEð Þ: ð15Þ

Expanding terms in this equation and substituting (10), it
becomes

p̂ ¼ V1V
t
1pþ V1E

�1
1 Vt

1X
tQE; ð16aÞ

that is,

p̂ ¼ RpþGE; ð16bÞ

where

R ¼ V1V
t
1 ð17Þ

and

G ¼ V1E
�1
1 Vt

1X
tQ: ð18Þ

R, the so-called ‘‘resolution matrix,’’ describes the relation-
ship between estimated parameters and true parameters. The

difference between true and estimated parameters is given
by

p� p̂ ¼ I� Rð Þp�GE: ð19Þ

Equation (19) expresses the ‘‘parameterization wrongness’’
of a calibrated model; unfortunately, this cannot be
calculated because p is unknown. However, its expected
value (i.e., E(p � p̂)) is proportional to the expected value
of p (i.e., E(p)), assuming that E(E) is zero. As is stated in
section 2.1, with the elements of p defined as parameter
perturbations from their (assumed known) average values,
E(p � p̂) is zero.
[20] Let it be assumed that the covariance matrix of p

(i.e., C(p) as featured in equation (2)) and the covariance
matrix of measurement and structural noise (i.e., C(E) as
featured in equation (6)) are known; let it be further
assumed that p and E are independent. Then C(p � p̂) is
easily calculated from (19) as

C p� p̂ð Þ ¼ I� Rð ÞC pð Þ I� Rð Þt þ GC Eð ÞGt: ð20Þ

If (17) and (18) plus (6) are now substituted into (20) and
use is made of the relationship

VVt ¼ V1V
t
1 þ V2V

t
2

� �
¼ I; ð21Þ

we obtain

C p� p̂ð Þ ¼ V2V
t
2C pð ÞV2V

t
2 þ s2hV1E

�1
1 Vt

1: ð22Þ

This expression can be made even simpler if the
precalibration probability distribution C(p) of model
parameters is such that they are all independently vari-
able and have the same variance sp

2. In this case,
equation (20) becomes

C p� p̂ð Þ ¼ s2pV2V
t
2 þ s2hV1E

�1
1 Vt

1: ð23Þ

If a model prediction s is calculated from model param-
eters p using equation (1), we can compare the ‘‘model-
calculated prediction’’ (i.e., the prediction made on the
basis of calibrated parameters p̂, designated herein as ŝ)
with the true prediction (i.e., the prediction made on the
basis of true parameters p, designated herein as s) using
the formula

s� ŝ ¼ yt p� p̂ð Þ: ð24Þ

Equation (24) expresses the ‘‘wrongness’’ or ‘‘error’’ of a
model prediction. Once again, this can never be known.
For the same reasons as those already stated with respect
to parameter wrongness its expected value is zero. Its
variance can be calculated from (24) as

s2s�ŝ ¼ ytC p� p̂ð Þy: ð25Þ
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Substitution of this relationship into (20), (22), and (23)
yields

s2s�ŝ ¼ yt I� Rð ÞC pð Þ I� Rð Þtyþ ytGC Eð ÞGty; ð26aÞ

s2s�ŝ ¼ ytV2V
t
2C pð ÞV2V

t
2yþ s2hy

tV1E
�1
1 Vt

1y; ð26bÞ

s2s�ŝ ¼ s2py
tV2V

t
2yþ s2hy

tV1E
�1
1 Vt

1y: ð26cÞ

From the above derivation it is apparent that equations (26b)
and (26c) are special cases of (26a), derivable from it by
substitution of appropriate expressions for R and G. In fact,
equation (26a) is perfectly general and pertains to no
regularization method in particular. Thus exactly the same
formula can be used to calculate predictive error variance
where regularization is achieved through a constrained
minimization process. However, in that case, equations (17)
and (18) are replaced by

R ¼ XtQXþ b2ZtQrZ
� ��1

XtQX ð27aÞ

G ¼ XtQXþ b2ZtQrZ
� ��1

XtQ; ð27bÞ

where Z is a matrix of regularization constraints on
parameter values (assumed to be linear), Qr is the
‘‘regularization weight matrix,’’ and b2 is the ‘‘squared
regularization weight factor,’’ which can also be considered
to be a Lagrange multiplier in the constrained minimization
process; see Doherty [2003] for a description of this type
of regularization and for an example of its use in the
groundwater modeling context.

2.4. Significance of Equations

[21] Equations (26) are of great importance. Formulation
of predictive error variance using these equations has the
benefit that the contributions made to this variance by two
different aspects of the model parameterization process are
made explicit. The second term of equations (26) is the
component of model predictive uncertainty that arises from
model-to-measurement misfit. In an overdetermined system
(where parameters are outnumbered by observations) this is
the only source of model predictive uncertainty considered
to exist, for under these conditions the resolution matrix R
is actually the identity matrix, and the first term of
equations (26) vanishes. Model predictive error analysis
based on this term has been undertaken by a number of
authors in the groundwater modeling context [see, e.g., Hill,
1989; Christensen and Cooley, 1999; Vecchia and Cooley,
1987].
[22] The first term of equations (26) accommodates the

fact that the calibration process cannot capture all of
the hydraulic detail prevailing within a study area. The
further removed the resolution matrix R is from the identity
matrix I, the larger this term is. In general, both data scarcity
and high data noise content promote ‘‘blurry’’ resolution
matrices and hence loss of system detail in a calibrated
model. This can lead to grossly inaccurate model predic-
tions where these predictions depend on that detail (i.e.,

when parameters are sensitive to that detail and hence y is
nonorthogonal to (I � R)p).
[23] For an uncalibrated model the second term of equa-

tions (26) is zero, and the resolution matrix R becomes the
null 0 matrix (this can be demonstrated in equation (27) by
setting Q to zero, effectively giving all observations a
weight of zero in the inversion process). Equation (26a)
then becomes equation (2), as it should.
[24] The second term of equations (26) also becomes zero

when a perfect fit is obtained between model outputs and
field measurements because of the absence of any measure-
ment or structural noise (i.e., C(E) is 0). The fact that
predictions made by a ‘‘perfectly calibrated’’ model can
be substantially in error is readily apparent from an inspec-
tion of the yt(I � R) portion of the remaining term. For an
underdetermined system, R is rank deficient; therefore its
columns span only a subspace of parameter space. It is thus
possible for ytR to be zero; under these circumstances the
calibration process does nothing whatsoever to reduce the
uncertainty of that particular model prediction, for equation
(26a) then yields the same result as equation (2).
[25] This analysis can be taken a step further. When

model-to-measurement misfit is zero, R becomes a projec-
tion operator. This is easily demonstrated by observing that

RRp ¼ Rp̂ ð28aÞ

(from p̂ = Rp) and

Rp̂ ¼ p̂ ð28bÞ

and therefore

RRp ¼ p̂ ¼ Rp RR ¼ R: ð29Þ

Equation (28b) follows from the fact that Xp = Xp̂. Also
following from this is the fact that

XR ¼ X: ð30Þ

From equation (17) it can be shown that if

Xy ¼ 0; then Ry ¼ 0: ð31Þ

From (31) it follows that ytR will be zero if Xy is 0 and R is
symmetrical, as it always is when regularized inversion is
implemented using truncated SVD. From this it follows that
if, for a particular model prediction, the vector of predictive
sensitivities (i.e., y) is perpendicular to all observation
sensitivity vectors (i.e., to all rows of the X matrix), then the
calibration process does nothing to decrease the uncertainty
of this prediction. Thus if a model is calibrated against data
types which bear little relation to the types of predictions
that a model will be required to make, then there can be no
guarantee that the calibration process will reduce the
uncertainties of these predictions at all.
[26] Examination of equation (26c) allows further insight

to be gained into the role of the calibration process in
reducing (or not) predictive uncertainty. Consider that a
prediction sensitivity vector y is parallel to an eigenvector
of V. That particular eigenvector must feature in either the
first term or the second term of (26c), depending on whether
it belongs to V1 or to V2. If it belongs to V2, then potential
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wrongness in the model prediction arises from the fact that
the calibration process provides no information that is
relevant to that prediction. Potential predictive error is
governed entirely by sp

2, the inherent (precalibration) un-
certainty of system properties, for the second term in (26c)
is zero because of orthogonality of y to all members of V1

(because the eigenvectors composing the columns of V are
all orthogonal to each other). Thus the uncertainty of this
prediction is undiminished from that which prevailed prior
to model calibration.
[27] On the other hand, if the prediction sensitivity

vector y is parallel to a V1 eigenvector, the first term of
equation (26c) is zero and the second term is nonzero. The
magnitude of this second term depends on two factors.
One is the goodness of model-to-measurement fit as encap-
sulated in the term sh

2; the other is the magnitude of the
eigenvalue corresponding to the eigenvector to which the
prediction sensitivity vector is parallel. If this eigenvalue is
small, the contribution to uncertainty arising from the
second term can be very large, possibly larger than if
the model had not been calibrated at all. In this case the
calibration data set says less about the parameter combina-
tions that define prediction sensitivity than can be said on
the basis of knowledge about system properties from
outside of the calibration process altogether. Under these
circumstances, once again, the calibration process provides
no assistance in reducing predictive uncertainty below that
which exists if the model has not been calibrated at all. On
the other hand, if the pertinent eigenvalue is large, then the
calibration process may reduce predictive error variance
substantially, the extent to which it does this being depen-
dent on the measurement error variance sh

2.

2.5. Tailoring the Calibration Process to Reduce
Predictive Error

[28] The notion of a calibrated model conveys the idea
that a model, once calibrated, can be used to make a variety
of different predictions of system behavior. It also suggests
that the calibration process is independent of the prediction
process. The analysis presented in section 2.4, however,
suggests that the usefulness of environmental models in
making critical predictions of system behavior can be
enhanced if the calibration process is undertaken with
predictions required by the model kept specifically in mind.
[29] When undertaking regularized inversion based on

truncated SVD, eigenvectors can be shifted from V2 to V1

of equations (26) to increase goodness of fit to a level
considered acceptable. This is normally done in order of
decreasing respective eigenvalue; that is, eigenvectors
corresponding to high eigenvalues (and hence respecting
broad-scale hydraulic property distributions) are normally
shifted to V1 while those with low eigenvalues (reflecting
system detail) are retained in V2. Where no eigenvectors are
shifted to the second term, the predictive variance is the same
as that of an uncalibrated model (see equation (2)). As
eigenvectors are shifted from V2 to V1, the first term of
equation (26c) falls monotonically, while the second term
rises monotonically. (The same will be generally true of
equations (26a) and (26b), though departures from this may
occur if C(p̂) entails high correlation between individual
parameters and/or regularization is not undertaken using
truncated SVD.)

[30] In most underdetermined calibration contexts the
sum of the two terms of equation (26c) will show a
minimum as eigenvectors are transferred from the first to
the second term. This occurs because of the fact that under
these circumstances, E1 possesses zero or near-zero diago-
nal elements which greatly magnify the second term as
corresponding eigenvectors are transferred to it. Here it is
assumed that there is enough salient information within the
observation data set (e.g., enough high-valued elements of
E1) for the calibration process to reduce the variance of the
prediction at least a little from that pertaining to an
uncalibrated model before it commences to rise, thus
causing the minimum of the curve. Where it exists, the
location of this minimum will be dependent on the partic-
ular prediction being investigated. However, there is no
certainty that the number of eigenvalues at which this
predictive uncertainty minimum is achieved corresponds
to the number of eigenvalues required to achieve (but not
to undercut) a suitably defined Fn. In fact, as is demon-
strated in section 3.2, minimization of error variance for a
particular prediction may require use of many eigenvalues
beyond that which is required to achieve a suitable value for
Fn and can thus result in what classical analysis would
perceive as overfitting. Furthermore, the truncation level for
minimizing the uncertainty of one specific prediction may
not be the same as that required to minimize the uncertainty
of another prediction, lending weight to the assertion
made in section 1 that model calibration may need to be
prediction-specific.
[31] So how can model calibration be ‘‘tuned’’ to the

prediction that it must make? A number of options exist.
One is to actively seek the minimum in the predictive
variance curve, even if this leads to overfitting according
to the classical view of model calibration. Another option is
to vary from the traditional practice of ranking eigenvalues
in decreasing order of their magnitude when deciding on a
level of truncation. This traditional strategy always leads to
the loss of high eigenvalues from V2 before low eigenval-
ues, regardless of the disposition of corresponding eigen-
vectors with respect to a model prediction of particular
interest. An alternative strategy is to take account of the
orientation of XtQX eigenvectors with respect to predictive
sensitivity when deciding on the order of eigenvector
excision from V2. Thus, for example, eigenvector A may
have a lower eigenvalue than eigenvector B, yet its inner
product with y may be higher. If its eigenvalue is not so low
that its presence in the second term of equation (26) results
in higher predictive uncertainty than its presence in the first,
it should be included in the second term (i.e., the V1 term),
thus avoiding excision in the truncation procedure.
[32] An alternative, and simpler, strategy can be

employed to increase the likelihood that eigenvectors of
XtQX which are parallel to a key model prediction belong
to V1 rather than to V2, thus reducing the probability of
model error in making that prediction. This strategy is to
increase the weights associated with observations whose
sensitivities are more aligned with a particular prediction
relative to those that are orthogonal to it. (Greater alignment
of a prediction with an observation is identified through
greater normalized inner product of the respective vectors,
normalization being achieved by dividing by the product of
the magnitude of the two vectors.) This procedure results in
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a Q matrix for which equation (6) no longer applies. The
second term in equations (26b) and (26c) becomes more
complicated as a result; equations (32) repeat equations (26)
where C(E) is no longer proportional to Q�1:

s2s�ŝ ¼ yt I� Rð ÞC pð Þ I� Rð Þtyþ ytGC Eð ÞGty; ð32aÞ

s2s�ŝ ¼ ytV2V
t
2C pð ÞV2V

t
2y

þ s2hy
tV1E

�1
1 Vt

1X
tQC Eð ÞQXV1E

�1
1 Vt

1y; ð32bÞ

s2s�ŝ ¼ s2py
tV2V

t
2yþ s2hy

tV1E
�1
1 Vt

1X
tQC Eð ÞQXV1E

�1
1 Vt

1y:

ð32cÞ

With XtQX thus reformulated its eigenvectors and eigen-
values also change. However, now the eigenvectors which
are more parallel to y will tend to have higher eigenvalues
and hence will be less likely to be truncated in a
calibration procedure that orders eigenvalues by decreasing
magnitude prior to truncation. Care must be taken in
implementing this procedure, however, to ensure that the
second term of equations (32) is not unduly amplified by
providing high weights to observations that are inherently
unreliable.
[33] This philosophy of weights assignment violates

traditional least squares practice. This traditional practice
is based on predictive error variance minimization [Bard,
1974] for overdetermined systems, in which all parameters
to which a prediction is sensitive are assumed to be
individually estimable through the calibration process.
However, it is worth noting that the strategy of placing
increased emphasis on observation types that most resemble
the types of predictions that a model will be required to
make is certainly in harmony with the philosophical under-
pinnings of manual calibration which is often based on the
simple, but effective, premise that ‘‘if you can’t fit every-
thing, then at least fit the things that matter most.’’ The
effectiveness of this strategy is demonstrated in section 3.3
using a synthetic example.
[34] It must also be pointed out that adherence to

traditional weights assignment practices that are recom-
mended by authors such as Hill [1998] presupposes that
C(E) is known or can be estimated. Where calibration data
noise is dominated by model structural error (as is mostly
the case), C(E) is not known nor can it be easily estimated.
Furthermore, in many contexts such ‘‘noise’’ may show
considerable spatial correlation of unknown magnitude.
Thus the common practice of assuming independence of
measurement errors (and thus a diagonal Q matrix) is, in
fact, a violation of the precepts espoused in guidelines
such as these. In view of this fact the assignment of
weights in a manner that places greater emphasis on
observations that are more closely related to key model
predictions is probably no less in violation of these
precepts than many other commonly implemented methods
of weights assignment; however, in view of its probably
beneficial outcome of reducing predictive error variance it
can be far more effective.
[35] Where regularized inversion is undertaken using

methods other than truncated SVD (e.g., constrained min-
imization), it is also possible to tailor the model calibration

process such that the variance of model predictive error is
minimized. In equations (27) the reciprocal of the squared
regularization weight factor b2 plays a similar role to that of
k, the eigenvalue truncation number employed by the
truncated SVD method; higher values of b2 result in
smoother calibrated fields and higher values of F. Normally,
a value of b2 is sought which results in an ‘‘adequate’’ level
of model-to-measurement misfit, that is, an objective func-
tion equal to a suitably chosen Fn. However, as will be
demonstrated in section 3.2, upward variation of b2 results
in a monotonic lowering of the second term of equation
(26a) and a monotonic rise in the first term. Hence there is a
value of b2 for which the error variance of a particular
prediction is minimized. This value will rarely coincide with
that required to exactly achieve Fn. Hence one option for
tuning the calibration process for prediction optimization is
to seek that b2 which minimizes predictive error variance.
Alternatively (or as well), higher weights could be
assigned to those members of a calibration data set that
are most pertinent to a particular prediction, as was
discussed above in relation to truncated SVD. A further
strategy may be to tailor the regularization constraint
matrix Z to best accommodate the prediction that the
model is required to make.

2.6. Effect of Parameter Lumping

[36] Classical approaches to model calibration undertake
‘‘preemptive’’ or ‘‘implicit’’ regularization using some form
of parameter lumping. For a groundwater model this often
takes the form of spatial parameter definition using a limited
number of zones of piecewise parameter uniformity. This
approach to regularization has the advantage that if zones
are few enough and are defined in accordance with spatial
data density, numerical stability of the inversion process is
guaranteed. However, it has the disadvantage that some of
the information content of the calibration data set may be
lost because the chosen parameterization methodology has
limited means of expressing hydraulic property complexity
that may become apparent through the calibration process
itself. (It should be noted in passing that regularized
inversion and geologically based parameter zonation are
not mutually exclusive [see, e.g., De Groot-Hedlin and
Constable, 1990]. The advantage of combining zones with
regularized inversion based on a large number of parameters
is that intrazonal heterogeneity can be accommodated in the
model at the same time as interzonal hydraulic property
contrasts if the calibration data set provides a strong enough
indication that such intrazonal complexity exists.)
[37] Suppose that instead of estimating m parameters

whose true values are encapsulated in the vector p, j lumped
parameters comprising the elements of a smaller vector r̂ are
estimated in their stead. Suppose further that model outputs
corresponding to observations are calculated using the
relationship

o ¼ Wr̂; ð33Þ

r̂ can be determined through objective function minimiza-
tion using the formula (same as equation (8))

r̂ ¼ WtQWð Þ�1
WtQh: ð34Þ
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Substitution of (4) then yields

r̂ ¼ WtQWð Þ�1
WtQ Xpþ Eð Þ ð35aÞ

¼ R0pþG0E; ð35bÞ

where the ‘‘modified resolution matrix’’ R0 and the matrix
G0 of equations (35) are given by

R0 ¼ WtQWð Þ�1
WtQX ð36aÞ

and

G0 ¼ WtQWð Þ�1
WtQ: ð36bÞ

Let the relationship between a parameterization based on
many parameters p̂ and that based on lumping of these
parameters (i.e., r̂) be described by

p̂ ¼ Lr̂; ð37Þ

where L is a m � j ‘‘lumping matrix.’’ In many cases each
row of L will be composed of zero elements except for a
single element of 1. For example, if zone-specific pilot
points [see Doherty, 2003] are employed as the spatial
parameterization basis for p̂, while the elements of r̂ are
zonal parameter values, each element of p̂ will have the
same value as the element of r̂ that pertains to the zone in
which the corresponding pilot point lies.
[38] With L, R0, and G0 defined as above it is easy to

show that R and G matrices for use in equation (26a) can be
calculated as

R ¼ LR0 ð38aÞ

and

G ¼ LG0: ð38bÞ

With these definitions of R and G, equation (26a) provides
the full expression for predictive error variance of a lumped
parameter model (and is equivalent to the linear part of
Cooley [2004, equation 3.32]). For reasons already dis-
cussed in relation to underdetermined systems, omission of
the first term of this equation (as is usually done in practice)
can lead to significant underestimation of predictive error
variance, especially where the underlying system is com-
plex. Unfortunately, however, equation (26a) may be diffi-
cult to apply in practice. This is because its evaluation
assumes that even though only lumped parameters are
estimated, sensitivities of a much larger number of distrib-
uted parameters have also been calculated (for use in the X
matrix). Nevertheless, this analysis demonstrates that esti-
mation of predictive error variance based only on the
statistics of measurement noise neglects an extremely
important contributor to potential model error. Where lump-
ing is significant and R is thus significantly different from I
and/or where predictive sensitivities have a large component
in the subspace of m-dimensional parameter space spanned
by (I � R), neglect of this contribution may make such
estimates almost meaningless.

3. Synthetic Example

3.1. Model Description

[39] The principles discussed in section 2 are illustrated
with reference to a synthetic model. Figure 1a shows the
500 m � 800 m rectangular domain of a single-layer
groundwater model of flow in a confined aquifer of 10 m
thickness. A fixed inflow of 0.1 m3 d�1 m�1 occurs through
the upper boundary of the model; heads are fixed at 0 m
along the lower boundary. A hydraulic conductivity field
with a log average value of zero was generated using a log
exponential variogram with a range (3 times the coefficient
in the exponent in the variogram equation) of 600 m and a
sill of 0.2. Diffuse recharge is zero. Flow within the domain
was simulated using MODFLOW-2000 [Harbaugh et al.,
2000] using a finite difference grid consisting of 50 rows
and 80 columns of 10 m square cells. The travel time and
track of a particle released near the top boundary was
simulated using the ADV package of MODFLOW-2000
[Anderman and Hill, 2001]; the path of the particle is
depicted in Figure 1a.
[40] On the basis of the hydraulic conductivity field

shown in Figure 1a, heads were generated at 12 wells, the
locations of which are shown in Figure 1b; heads in these
wells vary between 5.7 m in the upper part of the model
domain and 1.1 m in the lower part of the domain. These
heads were used for model calibration after the addition of
Gaussian noise with a standard deviation of 0.3 m.
[41] Spatial parameterization was implemented using

pilot points. As described by Doherty [2003], the calibration
process assigns hydraulic conductivity values to these
points; these values are then spatially interpolated to all
cells of the model domain (using kriging in the present
case).
[42] Regularized inversion of the head data was under-

taken using PEST [Doherty, 2004], with assistance from the

Figure 1. (a) Hydraulic conductivity distribution within
rectangular model domain and trace of released particle.
(b) Locations of observation wells (circles and diamonds)
and pilot points (crosses). Model domain is 500 m � 800 m.

8 of 14

W05020 MOORE AND DOHERTY: CALIBRATION AND MODEL PREDICTIVE ERROR W05020



PEST groundwater utilities [Doherty, 2003]; both truncated
SVD and constrained minimization regularization were
employed. In the latter case, regularization constraints were
of the ‘‘preferred value’’ type, with the log of each pilot
point hydraulic conductivity being assigned a preferred
value of zero; thus the Z matrix of equation (27) was an
m � m identity matrix. Qr was calculated as the inverse of
an inter–pilot point covariance matrix; pilot point cova-
riances were calculated using the same variogram as that
employed for generation of the hydraulic conductivity field.
The squared regularization weight factor b2 was calculated
by PEST as that required to achieve a user-supplied value
for Fn, the objective function at which ‘‘adequate calibra-
tion’’ is deemed to occur in accordance with the level of
measurement noise.
[43] Analyses in this section focus on a prediction of the

particle exit location, the true value of this prediction being

206.78 m from the left side of the model. This prediction,
rather than travel time, was chosen for the analyses de-
scribed herein because of the fact that the latter prediction is
relatively unconstrained by a calibration process that is
based on heads alone.

3.2. Predictive Variance Minimization

[44] With Gaussian noise of standard deviation 0.3 m
added to the heads an objective function value (i.e., Fn of
equation (9)) of 12.0 should be sought in a regularized
inversion process in which measurement weights are all set
to 3.33, this being the inverse of the noise standard
deviation. (Note that weights are squared to form the
diagonal elements of Q.)
[45] Table 1 summarizes the outcomes of undertaking

regularized inversion using truncated SVD with a varying
number of pretruncation eigenvalues. It is apparent from
Table 1 that an objective function of 12 can be achieved
with as few as four eigenvalues. If the terms of equations
(26) are computed using sensitivities calculated on the basis
of calibrated parameters (i.e., parameters calculated using
four eigenvalues), the graphs of Figure 2 result; note that
C(p) in equations (26) was calculated using the same
variogram as that which was used to generate the hydraulic
conductivity field and thus properly represents the spatial
characteristics of the true hydraulic property field. Figure 3a
shows the calibrated parameter field.
[46] The monotonic rise of the second term of equations

(26) and the monotonic fall of the first term are apparent
from Figure 2. As the number of eigenvalues increases, the
second term does not rise fast enough relative to the first
term for the sum of the two terms to incur a minimum;
however, if the graph were to be extended to 13 eigenvalues
(at which stage the second term of equation (26) would be
extremely high because of the fact that with 12 observations
the rank of XtQX is only 12), a pronounced minimum at
12 eigenvalues would be apparent.
[47] Figure 2 demonstrates that even though the model

can be considered to be calibrated with truncation occurring
at 4 eigenvalues, minimum predictive error variance is
achieved at 12 eigenvalues. It is interesting to note from
Table 1 that the most accurate prediction of particle exit
point location was made by the model calibrated using
seven eigenvalues.

Figure 2. Terms of equation (26) and total model
predictive error variance versus number of eigenvalues.
Sensitivities were calculated on the basis of parameters
estimated using four eigenvalues.

Figure 3. Calibrated hydraulic conductivity fields calcu-
lated using (a) truncated singular value decomposition with
four eigenvalues and (b) constrained minimization regular-
ization with Fn set to 12.0.

Table 1. Results of Truncated SVD Inversion With Varying

Number of Eigenvaluesa

Eigenvalues Before
Truncation Objective Function, m2 Exit Point Prediction, m

1 34.71 245.3
2 21.09 244.7
3 13.08 257.9
4 11.18 251.9
5 11.19 247.3
6 5.5 264.2
7 3.15 187.0
8 3.087 172.3
9 3.35 183.5
10 1.64 123.4
11 3.155 � 10�3 159.5
12 1.8 � 10�11 155.7

aTrue exit point location is 206.8 m. SVD is singular value
decomposition.
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[48] The calibration process was repeated using con-
strained minimization regularization. For Fn equal to 12
the corresponding b2 value is 3.10. The resulting calibrated
parameter field is shown in Figure 3b.
[49] Using sensitivities calculated on the basis of the

calibrated parameter field, the terms of equation (26) were
calculated for varying values of b2 (see Figure 4). Monoto-
nicity of the two terms of equation (26) is clearly demon-
strated in Figure 4. It is also apparent that the minimum
predictive error variance is achieved at a b2 value of 
1.0.
This is significantly less than the value of 3.10 required to
achieve a Fn of 12, thereby allowing a closer fit between
model outputs and field measurements to be attained if this
value were used in a regularized inversion process. This
demonstrates once again that model performance with
respect to the prediction of particle exit location is opti-
mized when the calibration process involves some degree of
overfitting. (The fact that the contributions to total predic-
tive error variance made by the terms of equation (26) are
about equal at the point of minimum predictive variance is a
coincidence.)
[50] Table 2 shows model-predicted exit points calculated

on the basis of parameters achieved through regularized
inversion using different values of b2. The closest prediction
to the actual exit point occurs at a b2 value of between 0.74
and 1.25.

3.3. Observation Weights Adjustment for Prediction
Optimization

[51] In section 3.2 it is demonstrated that a model can be
considered calibrated yet may not be optimally parameter-
ized for the making of a specific prediction. It is suggested
in section 2 of this paper that if data are weighted in
accordance with their relevance to a specific prediction,
the calibrated model may be capable of making that
prediction with a lower probability of error.
[52] For the analyses documented in section 3.2, obser-

vation weights were uniformly set at 3.33, this being the
inverse of measurement uncertainty. These analyses were
repeated with weights for 5 of the 12 observations being
doubled. With this weighting strategy the model can be
considered calibrated with an objective function of 27.0.
The observations chosen for enhanced weighting were head

values at the wells depicted as diamonds in Figure 1b. These
observations were chosen for special treatment because the
normalized inner products of the prediction sensitivity with
the sensitivities of these observations were all greater than
0.1; for all other observations, normalized inner products
were less than 0.1. Inner products were calculated using
sensitivities pertaining to the parameters depicted in
Figure 3b. (The fact that none of these observations lie
along the particle path is of interest. These head observa-
tions are sensitive to the hydraulic conductivity of material
occupying the boundary areas of the model domain; hy-
draulic conductivities are lower here than in the central part
of the model domain and heads here are thus more sensitive
to changes in their values. The direction in which the
particle moves is also sensitive to changes in hydraulic
conductivity in these boundary areas, for these low conduc-
tivities cause the fixed amount of water inflow through the
top model boundary to be concentrated to some extent
within the central part of the model domain. Any local
reduction of these boundary area conductivities would thus
result in the flow of more water into these areas and would
thus result in movement of the particle toward them.)
[53] Table 3 shows the results of truncated SVD regular-

ized inversion with a varying truncation limit. Once again,
the model can be said to be calibrated if only four eigen-
values are employed. Figure 5 shows the terms of equation
(32) (which must now be used instead of (26) because

Figure 4. Terms of equation (26) and total model
predictive error variance versus 1/b2. Sensitivities were
calculated on the basis of parameters estimated using a b2

value of 3.10 (i.e., a 1/b2 value of 0.32).

Table 2. Results of Constrained Minimization Inversion Using

Different Squared Regularization Weight Factorsa

b2 Objective Function, m2 Exit Point Prediction, m

140.19 30.0 220.5
32.04 24.0 242.1
5.63 15.0 233.1
3.10 12.0 226.9
1.99 10.0 244.3
1.25 8.0 211.1
0.74 6.0 197.0
0.28 3.0 163.9
0.093 1.0 140.6
0.017 0.1 154.1

aTrue exit point location is 206.8 m.

Figure 5. Terms of equation (32) and total model
predictive error variance versus number of eigenvalues.
Sensitivities were calculated on the basis of parameters
estimated using four eigenvalues. Weights were doubled at
wells shown as diamonds in Figure 1b.
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equation (6) no longer applies) calculated using sensitivities
pertaining to the calibrated model. The minimum predictive
error variance (once again obtained at 12 eigenvalues) is
slightly lower than that obtained with uniform weights.
What is more important, however, is that the predictive
error variance at four eigenvalues is much lower than for
uniform weights. Thus the calibrated model is a much better
predictor of the exit point location. Calibration results listed
in Table 3 support this conclusion.
[54] The worth of selective observation weights enhance-

ment was also tested using constrained minimization regu-
larization. Figure 6 and Table 4 show the results. Calibration
is achieved at a b2 value of 
10.9 (i.e., with 1/b2 equal to

0.092). Predictive error variance at the point of calibration
is lower in Figure 6 than in Figure 4 where no weights
enhancement was undertaken. Table 4 shows that the
calibrated model is indeed a good predictor of particle exit
point location.
[55] Before concluding this section it must be pointed out

that the parameterization strategy employed in this example
incorporates a form of lumping or ‘‘averaging,’’ this being
incurred through the kriging process by which pilot point
values are transferred to the model grid. (The benefits of
using a pilot points scheme for spatial parameter definition
are explained by Doherty [2003].) Hence the ‘‘true param-
eter vector’’ p is, in fact, a slightly smoothed version of the
real hydraulic conductivity distribution. In some circum-
stances this mechanism of spatial parameterization could
place some constraints on the parameter field assigned to

the model domain through the calibration process, poten-
tially causing it to be smoother than it would otherwise be.
In the present instance, however, parameter field smoothing
incurred by kriging is small compared with that incurred
by calibration, as an inspection of the calibrated fields
in Figure 3 suggests. Thus the use of kriging in the
parameterization process does not limit the ability of the
calibration process to extract information from the calibra-
tion data set, this being readily verified by the fact that we
can, if we wish, obtain a solution to the inverse problem
with zero model-to-measurement discrepancy (through
using 12 eigenvalues or a very low value of b2).
[56] The presence of kriging-induced smoothing does,

however, slightly compromise estimates of predictive error
variance calculated in this example due to the sensitivity of
travel path predictions to this lost detail. Underprediction of
predictive error variance incurred through this mechanism
has, however, been calculated to be slight; it could have
been further reduced through the use of more pilot points
than the 104 employed in this study. Alternatively, its
contribution to predictive error variance could have been
computed by other means, and its effect could have been
included in the calculated total predictive error variance;
this topic, however, is beyond the scope of the present
analysis and will form the subject of a later paper.

3.4. Predictive Error Variance With
Parameter Zonation

[57] As described in section 2.6, predictive error variance
calculation based on lumped parameterization can be ac-
commodated if equation (26a) incorporates R and G matri-
ces described by equations (38). This is now demonstrated
using parameters based on zones of piecewise uniformity.
[58] Figure 7 shows the zonation pattern chosen for this

demonstration; boundaries for three (noncontiguous) zones
were drawn against the background of the true hydraulic
conductivity field depicted in Figure 1a (a luxury not
available in normal modeling practice). Estimation of zonal
hydraulic conductivities was undertaken using the same
calibration data set as that used for previous analyses.
However, weights enhancement was not employed, each
head measurement thus being assigned a weight of 3.33.

Table 3. Results of Truncated SVD Inversion With Varying

Number of Eigenvalues With Measurement Weights Doubled for

Wells Shown as Diamonds in Figure 1ba

Eigenvalues Before
Truncation Objective Function, m2 Exit Point Prediction, m

1 73.74 244.9
2 37.35 240.2
3 29.69 245.2
4 20.12 220.3
5 13.95 205.4
6 13.57 204.9
7 6.847 203.9
8 3.933 146.6
9 3.919 158.2
10 1.363 138.9
11 0.399 143.4
12 2.33 � 10�11 155.7

aTrue exit point location is 206.8 m.

Figure 6. Terms of equation (26) and total model
predictive error variance versus 1/b2. Sensitivities were
calculated on the basis of parameters estimated using a b2

value of 10.9 (i.e., a 1/b2 value of 0.092).

Table 4. Results of Constrained Minimization Inversion Using

Different Squared Regularization Weight Factors With Mea-

surement Weights Doubled for Wells Shown as Diamonds in

Figure 1ba

b2 Objective Function, m2 Exit Point Prediction, m

42.02 42 230.9
17.32 32 218.8
10.92 27 210.7
6.69 22 201.3
1.99 12 177.1
0.69 6 151.3
0.31 3 131.9
0.10 1 124.2

aTrue exit point location is 206.8 m.
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The X matrix of equation (36) was calculated on the basis of
the pilot points depicted in Figure 1b, with calibrated values
assigned to these points according to the zones in which
they lie; however, in order to establish true correspondence
between pilot point and zone parameters these sensitivities
were calculated on the basis of a kriging procedure which
prevented interpolation from pilot points in one zone to cells
occupying another zone.
[59] Predictive error variance was calculated as

10,189 m2. The contribution to this variance from the
second term of equation (26) is 173 m2, this being the
predictive error variance that would have been calculated
using traditional methods that ignore the implicit regulari-
zation of the lumping process. The actual model prediction
was a surprisingly good 210 m. This level of accuracy is
partly attributable to luck and partly attributable to the fact
that zonation definition took place against the background
of the true hydraulic conductivity field, constituting the
addition of a significant amount of extra information to the
calibration process. Nevertheless, the above calculation
shows that the potential error associated with this model
prediction is still quite high.

4. Discussion and Conclusions

[60] The concepts introduced in this paper have a number
of important implications for the way in which models are
calibrated and the way in which they are used to support the

making of decisions in environmental management. Tradi-
tionally, model calibration is undertaken through solution of
an overdetermined inverse problem based on a simplified
representation of reality which involves some form of
parameter lumping. Through this process a set of ‘‘average’’
parameter values is sought, with averaging normally taking
place in a spatial sense. Weights ascribed to observations are
calculated as the inverse of their ‘‘uncertainty.’’ Though
acknowledgment is often given to the fact that measurement
noise is overshadowed by structural noise, the latter is
mostly assumed to exhibit no spatial or temporal correlation
or (in the case of hydrologic models) to possess a correla-
tion structure that can be eliminated by fitting to an
appropriate autoregressive moving average model [see,
e.g., Kuczera, 1983; Bates and Campbell, 2001]. This
allows the use of independent weights in place of a full
weight matrix which is proportional to the inverse of the
assumed measurement covariance matrix as required by
traditional parameter estimation theory. Once the calibration
process is complete, this single calibrated model is then
used to make a variety of different predictions.
[61] This approach to calibration has some serious short-

comings. Cooley [2004] demonstrates that the values esti-
mated for lumped parameters can only be interpreted as the
outcomes of a user-specified averaging process of pertinent
system properties when the measurement weight matrix is
proportional to the inverse of the covariance matrix that
properly characterizes the correlation structure of the
‘‘structural errors’’ induced by parameter lumping (e.g.,
by the replacement of a continuous hydraulic property field
by a small number of zones of piecewise constancy).
However, this can only be known if the true covariance
structure of the hydraulic property whose spatial variability
is lumped is accurately known. Where an incorrect hydrau-
lic property statistical structure is assumed or where use of a
full weight matrix is discarded in favor of independent
observation weights, then an altogether different hydraulic
property averaging process is implicitly undertaken through
lumped parameter model calibration. The relationships
between lumped parameters r̂ and true system parameters
p implied by this averaging process are available through
the R0 matrix of equation (36). An examination of this
matrix will often reveal that averaging of true parameter
values to form lumped parameter values can take place in
unintended ways and that where different parameter types
are being simultaneously estimated, a certain degree of
‘‘parameter contamination’’ may be present where the
averaging process extends across parameter types.
[62] Parameter estimation through regularized inversion

also results in parameter value averaging (and with it,
parameter contamination), the nature of which is available
through postcalibration analysis of the resolution matrix R.
Thus use of regularized inversion in model calibration has
the disadvantage that the modeler is not able to specify in
advance of the parameter estimation process the nature of
the desired relationship between estimated and true param-
eters and, through use of an appropriate measurement
weight matrix, to ensure that this relationship is respected
by that process. However, in our opinion this disadvantage
is more than offset by the fact that the solution of the inverse
problem through regularized inversion based on a large
number of parameters allows the calibration process to

Figure 7. Model domain showing hydraulic conductivity
field determined using zones. Predicted particle track line is
also shown.
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probe as many different dimensions in parameter space as
the calibration data set allows. In contrast, the solution of a
lumped parameter inverse problem can occupy only as
many dimensions in parameter space as there are lumped
parameters. As a result the likelihood of a predictive
sensitivity vector being orthogonal, or nearly orthogonal,
to the subspace of parameter space occupied by the solution
to the inverse problem is less when parameter estimation
is achieved through regularized inversion than through
estimation of lumped parameters. Thus the regularized
calibration process is able to reduce the variance of a greater
range of predictive types below their precalibration levels
by greater amounts because of the greater likelihood of
occupancy of at least part of the subspace of parameter
space on which these predictions depend by the solution to
the inverse problem. In addition to this, better fits can be
obtained between model outputs and field data; hence
lumping-induced structural noise is greatly reduced. Both
of these contribute to increased predictive reliability of the
calibrated model.
[63] Where a model is calibrated through regularized

inversion, the role of observation weights in the inversion
process can differ from their traditional role in the calibra-
tion of lumped parameter models. In the regularized inver-
sion context a judicious assignment of observation weights
can allow the user to guide this process in ensuring that
those dimensions of parameter space that are salient to a
particular prediction are indeed represented in the solution
of the inverse problem. Furthermore, the analysis presented
herein can be used to ensure that if a particular parameter
subspace can only be populated with parameter estimates
that have more uncertainty (as a result of observation noise)
than those which were available through prior knowledge of
hydraulic property values, then such calibration-derived
estimates can be excluded from the calibrated model. Judi-
cious weights assignment can thus constitute a strategy for
ensuring that the model contains enough parameterization
detail for the making of a particular prediction without
compromising the integrity of that prediction by contam-
inating it with any more ‘‘predictive noise’’ than is
necessary.
[64] The theory presented in this paper can also provide a

powerful basis for the making of important decisions
regarding appropriate model complexity and the worth of
data acquisition in supporting the parameterization of that
complexity. (‘‘Complexity’’ here is loosely equated to the
number of parameters.) Proper assessment of these issues
can lead to optimal deployment of financial and other
resources in data acquisition and processing in support of
environmental management. Use of equations (26) and (32)
does not require that a model actually be calibrated; it only
requires that all parameters that would be estimated through
the calibration process be represented in the model. Once
sensitivities of pertinent model outputs with respect to these
parameters have been calculated, singular value decompo-
sition of (XtQX) allows estimation of the error variance
associated with a particular model prediction. By comparing
this variance with that achievable without calibration
(calculable through equation (2)) the worth of the calibra-
tion process in reducing this variance can be judged. This,
in turn, allows an assessment to be made of the utility of the
calibration process in increasing the certainty of predictions

of future environmental behavior before the calibration
exercise is actually undertaken. Furthermore, through
graphs such as those appearing in Figures 2, 4, 5, and 6
the level of model complexity that is optimal for the making
of a particular prediction, given the nature of that prediction
and the level of noise associated with field measurements,
can be judged.
[65] What is even more useful, however, is that this

analysis can then be repeated with the inclusion of notional
additions to the calibration data set or with alterations made
to C(p) in order to reflect notional direct measurements of
system properties. The reduction in model predictive vari-
ance that would be accrued through inclusion of this extra
information in the model parameterization process can then
be used to assess its worth. Various data acquisition strat-
egies can thereby be compared in terms of their ability to
increase model predictive reliability; that which provides
the greatest return for investment can then be selected for
implementation. Because the characterization of model
predictive variance encapsulated in equations (26) and
(32) includes the contribution to this variance made by both
measurement error and environmental heterogeneity that
cannot be captured by the calibration process (i.e., the
second and first terms, respectively, of these equations),
such a methodology for assessment of data worth is superior
to those presented by Tiedeman et al. [2003] and Hill et al.
[2001], who ignore the potentially large contribution that
can be made to predictive variance by this latter source.
The use of the methodology described herein in optimiza-
tion of data acquisition will be demonstrated in a future
publication.
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