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Case Study/ 

Practical Postcalibration Uncertainty Analysis: 
Yucca Mountain, Nevada 
by Scott C. James 1, John E. Doherty2, and AI-Aziz Eddebbarh3 

Abstract 
The values of parameters in a groundwater flow model govern the precision of predictions of future system 

behavior. Predictive precision, thus, typically depends on an ability to infer values of system propelties from 
historical meac;urements through calibration. When such data are scarce, or when their information content with 
respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, 
even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive 
uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncer­
tainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear 
and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, 
Nevada, the United States ' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncer­
tainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization 
density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of 
different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis 
provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) 
probability distribution functions. This article applies the above methods to a prediction of specific discharge and 
confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. 
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Introduction 
Modeling is routine in environmental management 

investigations, especially at sites where heavy invest­
ment may follow important decisions. Models provide the 
bridge between our understanding of environmental pro­
cesses formulated through mathematical descriptors, such 
as Darcy's law, and predictions of system behavior, per­
haps subject to remediation efforts. In doing this, they 
provide important decision-making support. 

Models serve another important role in environmental 
management-a role that is often insufficiently recog­
nized. Specifically, this role is to process all available site 
data, both hard and soft. Examples of such data include 
qualitative impressions of the disposition of geological 
layering supported by borehole intersections at a small 
number of locations, geophysical data, point measure­
ments of hydraulic properties, historical measurements of 
system state at different locations, geochemical inference, 
and so on. A good model will extract maximum infornla­
tion content from site data during the calibration process 
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while also reproducing historical site measurements. This 
leads to: 

1. Predictions of future system behavior with decreased 
uncertainty. 

2. The ability to quantify uncertainty. 
3. The ability to examine the contribution of dataset 

members in reducing uncertainty to its current level. 
4. The ability to quantify contributions to uncertainty 

from model parameterization. 
5. The ability to quantify how additional data collection 

activities could reduce model predictive uncertainty. 

Where a modeling exercise addresses all of the issues 
listed above, it is indeed paying returns on the invest­
ment of model development. For this to be accomplished, 
however, the model must be used in conjunction with 
appropriate parameter-estimation and uncertainty analy­
sis software that maximizes the potential of the model in 
relation to the goals listed. It is the authors' contention 
that the use of such software in conjunction with com­
plex, site-specific models should be viewed as an indis­
pensable component of model-based decision making and 
management. 

This article illustrates state-of-the-art uncertainty 
analysis techniques used in conjunction with a saturated 
zone groundwater model of the Yucca Mountain site 
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in Nevada (Figure I). All of the techniques discussed 
can be implemented with relatively little computational 
effort. Although they have all been outlined elsewhere, 
documentation of their combined application as an adjunct 
to calibration of a complex three-dimensional model is 
hereby presented for the first time. Herein, we specifi­
cally: 

I. Record the outcomes of a suite of uncertainty analyses 
that collectively implement optimum data interpreta­
tion in conjunction with a complex, three-dimensional 
model. 

2. Demonstrate the benefits gained by each of these 
analyses both individually and in concert. 

Methods discussed herein are applied to the Yucca 
Mountain (Nye County, Nevada) site-scale saturated 
zone flow model (YMPSZFM or the model) doc­
umented by SNL (2007, search DN2002478808 at 
http://www.lsnneLgov).This model was developed as part 
of the licensing requirements for the Yucca Mountain 
nuclear waste repository. The model is briefly described; 
a more detailed description of its construction and cali­
bration is provided in a comprehensive Yucca Mountain 
Analysis and Model Report (SNL 2007). All software 
used for these analyses are part of the PEST suite (Doherty 
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Figure 1. Geologic units (sliced at the water table) featured in the YMPSZFM (from SNL [2007]). 
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2009a, 2009b), which is in the public domain and is exten­
sively documented. 

This case study provides insights into the identifia­
bility and sensitivity of permeability in major hydrogeo­
logic units and structural features in the central part of 
the Death Valley regional groundwater flow system. In 
addition, uncertainty in groundwater-specific discharge, 
which is relevant to the rates of migration of radionu­
c1ides from the proposed repository at Yucca Mountain 
and from underground nuclear testing at the Nevada Test 
Site, is quantitatively evaluated. 

This article is organized as follows. First, a brief 
review is provided on the theoretical underpinnings of 
the methodologies. A short description of the model and 
of data used in its calibration and construction follows. 
Then, a number of uncertainty-related analyses as applied 
to the YMPSZFM are described. Finally, conclusions and 
ramifications for general modeling practice are provided. 

Theoretical Background 

General 
Hunt et al. (2007) and Moore and Doherty (2006) 

suggest that simulation of complex environmental pro­
cesses by numerical models requires a level of param­
eterization complexity commensurate with the scale of 
process and hydrogeologic heterogeneity within a study 
area. They note that this does not ensure that the model 
will make correct predictions. What it does provide, how­
ever, is the ability to compute confidence intervals that 
embrace the full range of predictive possibilities. Mean­
while, these confidence intervals are no larger than they 
need to be because they are conditioned on the available 
calibration data set, and because the calibration process 
has extracted maximum infonnation from that dataset. 

Several methods have been developed for calibra­
tion and uncertainty analyses of highly parameterized 
models (G6mez-Hernandez et al. 1997 and papers cited 
therein; Kitanidis 1996; Woodbury and Ulrych 2000). In 
this article, we use the term "highly parameterized" to 
refer to models where parameter numbers are such that 
their estimation requires solution of an ill-posed inverse 
problem. Although the YMPSZFM does not possess as 
many parameters as many other models, it does possess 
many more parameters than are capable of unique estima­
tion on the basis of the available dataset. Methodologies 
used in the present study are based on concepts outlined 
for linear model behavior by Moore and Doherty (2005) 
and for nonlinear model behavior by Tonkin and Doherty 
(2005, 2009) and Tonkin et al. (2007). These comprise a 
family of techniques rooted in the theory of mathematical 
inversion as outlined in various texts (Aster et al. 2005; 
Menke 1989). In the quasi-linear context, these method­
ologies allow rapid statistical characterization of model 
parameter and predictive error, parameter contributions 
to predictive error, and the relative efficacy of different 
existing or hypothetical data in reducing that error. In the 
nonlinear context, these techniques facilitate a complete 

characterization of model predictive error variance, tak­
ing into full account the complex nature of hydrologic 
property variability and of other processes affecting flow 
and transport. A brief overview of pertinent theory is pre­
sented next. 

Parameter and Predictive Error 
Let model parameters comprise the vector p. Let 

the action of a (linear) model on these parameters be 
characterized by the matrix X. Let the vector h represent 
observations of system state comprising the calibration 
dataset; these are contaminated by measurement noise e. 
Then: 

h = Xp+e (1) 

Let model-to-measurement misfit be characterized by 
an objective function <I> defined as: 

<I> = (Xp - h)IQ(Xp - h) (2) 

where Q is an appropriate weight matrix. The superscript 
t indicates matrix transpose. Q can be (but does not have 
to be) chosen such that it is proportional to the inverse of 
the covariance matrix of measurement noise C(e) so that: 

(3) 

where a~ is a reference variance. If the number of 
parameters comprising the vector p is small enough to 
allow their unique estimation on the basis of the current 
calibration dataset, then minimization of <I> leads to an 
estimated set of parameters ~: 

(4) 

However, suppose that there are more elements in p 
than can be uniquely inferred on the basis of the current 
calibration dataset. Suppose further that a suitably low 
objective function, one not so low that "overfitting" has 
occurred, can be obtained on the basis of a vector ~ 
calculated from has: 

(5) 

(An appropriate G will be derived shortly.) If 
Equation 1 is substituted into Equation 5, we have: 

~ = GXp + Ge = Rp + Ge (6) 

where R = GX is the resolution matrix. If there is no 
measurement noise, the ";"th row of R provides the 
averaging function through which an estimated parameter 
p (the ";"th element of p) is related to the unknown -I _ 

real-world hydraulic properties encapsulated in p. From 
Equation 6, parameter error is given by: 

~ - p = - (I - R)p + Ge (7) 

from which the covariance matrix of parameter error 
C(~ - p) is readily computed as: 

C(~ - p) = (I - R)C(p)(J - R)I + GC(e)G1 (8) 
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where C(p) (which must be supplied by the modeling and 
site characterization teams) bounds the variability of sub­
surface hydraulic properties. Specifically, it characterizes 
the current state of geological knowledge and geological 
uncertainty associated with a study site. Geologic uncer­
tainty is expressed through nonzero diagonal elements. 
Geologic knowledge is expressed through nonzero off­
diagonal elements (indicating that something is known of 
the spatial correlation of hydraulic properties) and finite 
diagonal elements (indicating that there are bounds on 
geological uncertainty). 

Let a prediction s depend on parameters p through 
the sensitivities recorded in the vector y. That is: 

(9) 

A model prediction, !, is calculated from calibrated 
parameters pas: 

(10) 

so that predictive error is: 

(11 ) 

Predictive error can never be known because the true 
parameters p of the system are not known. However, 
using Equation 8, predictive error variance a;_." can be 
calculated as: -

a~_,1 = ytc(p - p)y 

= yt(I - R)C(p)(I - R/y + ytGC(e)Gty (12) 

Gallagher and Doherty (2006) demonstrate the use of 
the preceding equation in computing the error variance 
associated with a variety of predictions made by a single­
layer, water-resource-management groundwater model. 

Singular Value Decomposition 
Equation 4 cannot be used to calculate p when more 

parameters that can be estimated uniquely on the basis of 
the current calibration dataset are sought, because XtQX is 
not invertible under these conditions. Hence, computation 
of a suitable value for ~ requires modification of this 
equation. 

Singular value decomposition (SVD) of XtQX leads 
to two matrices V and 8: 

(13) 

which, after partitioning of the 8 and V matrices, is 
equivalent to 

(14) 

where 8 is a diagonal matrix of singular values (arranged 
in decreasing order) and V is a matrix of orthogonal unit 
vectors (which are also eigenvectors of XtQX) spanning 
parameter space. Note that the second version of the 
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preceding equation explicitly separates the solution space 
(subscript 1) from the null space (subscript 2). Orthogonal 
unit vectors spanning the former subspace COmpJ1Se 
the columns of V \, whereas orthogonal unit vectors 
comprising the latter subspace comprise the columns 
of V2. These subspaces are orthogonal to each other; 
collectively they comprise the entirety of parameter space. 
The latter subspace is associated with singular values that 
are zero or very low, and these being contained within 
the 82 matrix. These are eliminated through truncation of 
parameter space in the truncated SVD procedure through 
which the ill-posed inverse problem of estimating p is 
solved. -

The interested reader may review the work of Tonkin 
and Doherty (2005) and Gallagher and Doherty (2006) 
for more detailed descriptions of the roles of the solution 
and null spaces in the model calibration process. Mathe­
matically, any vector op for which Xop is zero lies within 
the null space of the matrix X. From the existence of a 
null space follows nonuniqueness of the inverse problem 
of model calibration. This arises out of the fact that if 
any vector p satisfies Equation I . so too does the vec­
tor p + op. In calibrating a model, we normally search 
for the simplest p that satisfies Equation I; thus, we rep­
resent in the calibrated model no parameterization detail 
other than that required to explain the data. Parameter­
ization complexity beyond this, which does not detract 
from the model's ability to replicate past system behavior 
(and hence by definition lies within the null space of X), 
can only be represented in probabilistic terms (as we do 
herein). 

It can be shown that if truncated SVD is used for 
solution of the ill-posed inverse problem of estimating p, 
then G and R of Equations 5 and 6 become -

G = (VJ8IJV~)XtQ 
R = V\Vt

J 

(15) 

(16) 

It is easily shown that <l> in Equation 2 is minimized 
if truncation is such as to relegate only zero, or extremely 
low, singular values to 82. However, as Moore and 
Doherty (2005) show, it is best to truncate at singular 
values that are higher than zero, with the truncation 
level depending on the amount of noise associated with 
the measurement dataset h. This avoids overfitting to 
the calibration dataset and consequential amplification of 
the contribution of measurement noise to parameter and 
predictive error (see the minimum of the bold curve in 
Figure 5). 

Equation 12 indicates that there are two contributors 
to parameter and predictive error variance. The first term 
of this equation, comprising the null space contribution to 
predictive error variance, arises from parameter simplifi­
cations necessary to obtain a unique solution to the inverse 
problem (i.e., model calibration). In other words, it repre­
sents errors arising from the inability of calibrated model 
parameters (as estimated on the basis of the calibration 
dataset h) to represent the innate complexity of the real 
world. The second term of Equation 12, the solution space 
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contribution to parameter and predictive error variance, 
arises from the fact that even the simplified parameteri­
zation used in a calibrated model is potentially in elTor 
because its estimation is based on a dataset contaminated 
by noise. 

If C(p) is diagonal, parameters are normalized with 
respect to their innate variability [so that the diagonal 
elements of C(p) are I], and noise € is zero, it can be 
shown that calibrating a model using truncated SVD, 
where truncation is such that S2 is 0, leads to a minimum 
norm (and hence maximum likelihood) solution for p. 
The situation is slightly different when the measurement 
dataset is accompanied by noise. As more singular values 
are included in the parameter-estimation process, and as 
the truncation point thereby shifts toward singular values 
of lower value (to the right in Figure 5), the first term 
on the right-hand side of Equation 12 falls, whereas the 
second term rises. The total error variance first falls, and 
then rises, as the number of pretruncation singular values 
increases. Truncation should take place at the singular 
value where the error variance for a prediction of interest 
is minimized. 

Note that truncation at zero singular values is equiv­
alent to using no data in the calibration process. Parame­
ters thus maintain their initial values, and postcalibration 
parameter and predictive error variance are identical to 
precalibration parameter and predictive uncertainty. 

Parameter Identifiability 
The diagonal elements of the resolution matrix R 

defined by Equation 16 have special significance and can 
be used as a measure of parameter identifiability (Doherty 
and Hunt 2009). The ith diagonal element of R is the 
cosine of the angle between a vector in the direction of 
the ith parameter and its projection onto the calibration 
solution space. Its value can vary between zero and one. 
If it is zero, the parameter is completely unidentifiable; if 
it is one, the parameter is completely identifiable. If the 
identifiability of parameter i is designated as Ii, it can be 
computed as: 

(17) 

where i is a unit vector in the direction of the parameter. 
If a parameter has an identifiability of one, it does 

not follow that it can be estimated without error because 
its estimation is based on a dataset contaminated by 
measurement noise. The error in an individual estimated 
parameter can be computed using Equation (12) with y 
replaced by pii, where Pi is the "i"th element of p. Its 
"relative error reduction" (designated as ej) is defined as: 

ei = 1- (I8) 

where [o}lo is the precalibration variance of the parameter 
[i.e., the diagonal element of C(p) corresponding to this 
parameterl. Ideally, like identifiability, relative parameter 
error reduction should range between zero and one, with 

a value of one cOlTesponding to full solution space occu­
pancy and estimation on the basis of no measurement 
noise. whereas a value of zero signifies the absence of 
identifiability. Unfortunately, ej can sometimes become 
negative because it is possible that improper truncation 
(leading to overfitting) can actually increase the potential 
for error in some parameters (and also the predictions that 
depend on them) rather than decreasing it. It is notewor­
thy that amplification, rather than reduction, of parameter 
and predictive error can occur if regularization is under­
taken recklessly, irrespective of whether regularization is 
achieved through mathematical means such as truncated 
SVD or manually through precalibration lumping, tying, 
or fixing of parameters. 

As will be demonstrated below in the context of the 
YMPSZFM, the linear theory discussed above provides 
useful insights into: 

I. Parameter and predictive credibility. 
2. Parameter contributions to predictive uncertainty. 
3. Observation (both existing and hypothetical) contribu­

tions to predictive uncertainty reduction. 

Next we demonstrate how to extend these linear 
methods to yield quantitative estimates of the error 
variance associated with predictions made by a complex 
nonlinear model. 

Predictive Uncertainty and Predictive Error Variance 
The methodologies discussed begin with the concept 

of a calibrated model and then explore the potential for 
error in both model parameter estimates and in predictions 
made by a calibrated model. An alternative approach is 
to compute parameter and predictive uncertainty rather 
than error variance, thus adopting a Bayesian rather than 
frequentist (Annis 2008) outlook. If the regularization 
methodology used in model calibration is carefully chosen 
and implemented, the two will yield similar estimates of 
postcalibration parameter and predictive variability. How­
ever, uncertainty is more of an intrinsic property of the 
available dataset than is error and is thus independent of 
the regularization device used to obtain a unique solution 
to the inverse problem of model calibration. The variance 
of parameter and predictive uncertainty will therefore be 
slightly lower than that of parameter and predictive error 
(much lower if regularization is carelessly applied). 

For a linear model, if p and € are normally distributed, 
the variance of uncertainty of a prediction s conditioned 
by a calibration dataset h is (Christensen and Doherty 
2008): 

a; = ytc(p)y 

- ytC(p)XI[XC(p)xt + C(€)l- IXC(p)y (19) 

The first term is the precalibration uncertainty of the 
prediction, this being solely a function of innate param­
eter variability expressed by C(p) and the dependence of 
the prediction on model parameters expressed by the sen­
sitivity vector y. The second term embodies the reduction 
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in predictive uncertainty variance accrued by the condi­
tioning effect of historical measurements of system state 
(Le., calibration). Similar to Equation 12, Equation 19 can 
be used to explore the contribution of different parameter 
types to overall predictive uncertainty, as will be demon­
strated shortly for the YMPSZFM. It can also be used 
to determine the relative efficacy of various existing or 
potential observations in reducing that uncertainty. 

The relative uncertainty reduction of an individual 
parameter can be computed using Equation 18. However, 
in this case, aT in that equation is computed using 
Equation 19 (with y replaced by pi). Unlike relative error 

-I 

reduction, relative uncertainty reduction cannot fall below 
zero. 

Before progressing to nonlinear analysis, it is relevant 
to point out a feature of linear analysis that can greatly 
contribute to its general use. Neither Equation 12 nor 
Equation 19 incl udes actual parameter or observation 
values; they only include parameter and observation 
sensitivities, or quantities derived from these. Hence, 
these equations can be used for exploration of model 
predictive error/uncertainty regardless of whether or not 
the model has actually been calibrated. 

Nonlinear Error Variance Analysis 
One means through which predictive error variance 

can be computed without the need for an assumption 
of model linearity is through modification of the con­
strained predictive maximization/minimization technique 
described for over determined parameter estimation by 
Vecchia and Cooley (1987). The following modifications 
allow this technique to be used in highly parameterized 
contexts when the inverse problem of model calibration is 
ill-posed. Implementation of the modified method requires 
the following steps to be taken: 

1. Once calibrated, a model is reparameterized in terms 
of perturbations from the calibrated parameter set p. 

2. A composite objective function is formed with two 
components. The first component measures deviations 
of an arbitrary parameter set p from the calibrated 
parameter set p after projection of these deviations 
onto the calibration null space. Weights are assigned 
on the basis of the C(p) matrix of innate parameter 
variability after projection of this matrix onto the 
calibration null space. The second objective function 
component measures deviations of model outputs from 
those calculated on the basis of p. Weights are assigned 
on the basis of the C(e) matrix of measurement noise. 

A prediction of interest is then maximized/minimized 
subject to the constraint that the composite objective func­
tion described rises no higher than a user-specified limit. 
This limit determines the confidence level associated with 
the prediction. 

Tonkin et al. (2007) detail a constrained maximiza­
tion/minimization algorithm that implements this proce­
dure and discuss the relationship between the magnitude 
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of the composite objective function limit and the con­
comitant confidence level of the maximized/minimized 
prediction. 

Calibration-constrained Monte Carlo analysis con­
stitutes a second means by which the predictive error 
variance of a nonlinear model can be explored. Like 
the constrained maximization/minimization methodology 
described, it is also based on Equation 8. Starting with 
a calibrated parameter set p, the following procedure is 
implemented: -

I. Monte Carlo realizations of parameter fields are gen­
erated on the basis of the user-specified C(p) matrix. 

2. Differences between these fields and the calibrated 
parameter field are calculated (thus generating realiza­
tions of p-p). 

3. These differences are projected onto the calibration 
null space using the (I-R) matrix achieved through 
the calibration process. This replicates parameter error 
variability described by the first term of Equation 8. 
These projected differences are then added to the 
calibrated parameter field p . 

4. The model is then recalibrated, through adjustment 
of solution space parameter projections, to within a 
certain objective function threshold computed on the 
basis of C(e). This replicates parameter variability 
expressed by the second term of Equation 8. 

The overall process is model-run-efficient because of 
the following: 

1. Following null-space projection of parameter dif­
ferences (step 3 above), the objective function is 
close to optimal, so that only minor recalibration is 
required. 

2. Recalibration is undertaken by varying parameter com­
binations comprising VI vectors spanning the calibra­
tion solution space, rather than individual parameters; 
only as many parameter combinations are varied as 
there are significantly nonzero singular values repre­
sented in the SI matrix of Equation 14. 

3. The first iteration of the recalibration process employs 
precalculated solution space sensitivities, these being 
reused for all Monte Carlo parameter realizations. 
For many realizations, only one iteration is required 
to achieve recalibration to the level of the specified 
objective function due to the close-to-optimal starting 
point of the recalibration process. 

The outcome of this calibration-constrained Monte 
Carlo process is a suite of parameter realizations that 
are geologically realistic due to the fact that they were 
generated on the basis of a C(p) covariance matrix 
appropriate to the study site. Equally as important, these 
parameter realizations respect calibration constrains to 
within a threshold set by C(e). Any model prediction can 
then be made with all of these parameter realizations; the 
frequency histogram of that prediction characterizes the 
probability distribution of predictive error. 
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The Model 

General 
The YMPSZFM is outlined by SNL (2007); only 

those aspects of this model that are pertinent to the current 
analyses are summarized here. 

Saturated zone water movement in the study area 
is simulated using the Finite Element Heat and Mass 
(FEHM) model (Bower and Zyvoloski 1997; Zyvoloski 
1983). The YMPSZFM employs 69 layers and 956,345 
nodes to simulate three-dimensional flow of groundwater 
within the study area. Steady-state flow conditions are 
assumed for calibration purposes. 

The stratigraphy of the region (Figure I) is based 
on a three-dimensional hydrogeologic framework model 
(HFM) that was developed from digital elevation models, 
geologic maps, borehole information, geologic and hydro­
geologic cross sections, and other three-dimensional mod­
els to represent the geometry of the hydrogeologic units 
(HGUs). Structural features such as faults and fractures 
that affect groundwater flow also were added. The HFM 
represents Precambrian and Paleozoic crystalline and sed­
imentary rocks, Mesozoic sedimentary rocks, Mesozoic 
to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and 
lavas, and late Cenozoic sedimentary deposits of the 
Death Valley regional groundwater flow system (DVRFS) 
region in 27 HGUs (Belcher 2004). In this case study, 
uncertainty in HGU permeability is reduced and quantified 
through application of tools available through the PEST 
(Doherty 2009a, 2009b) suite of codes by constraining 
permeability ranges assigned by expert opinion with site 
hydrologic data. 

Groundwater flow in the Death Valley region is com­
posed of several interconnected, complex groundwater 
flow systems. It occurs in three subregions in relatively 
shallow and localized flow paths that are superimposed 
on deeper, regional flow paths. Regional groundwater 
flow is predominantly through a thick Paleozoic carbon­
ate rock sequence affected by complex geologic structures 
from regional faulting and fracturing that can enhance or 
impede flow (Belcher 2004). 

Parameters 
As discussed in detail by SNL (2007), the model 

grid was partitioned into 33 zones (including eight faults) 
of assumed hydraulic-property constancy (i.e., hydro­
geologic units and features). Zonation was established 
through site characterization studies including drilling 
and geological mapping (Figure 1). Permeability multi­
pliers for the 19 units in the altered northern region were 
deemed "adjustable" for the purpose of predictive uncer­
tainty analyses. A single value of vertical anisotropy, 
assigned to all volcanic and alluvial units, was also 
deemed adjustable. 

Model parameters are listed and briefly described in 
Table A I. Precalibration parameter uncertainties in Table 
Al represent the authors' best estimate of the standard 
deviations (in log space) of all adjustable parameters 
ba'ied on all available data (SNL 2007, section 7). If 

no data were available for a geologic unit's permeability 
(e.g., for parameter lIecu), then the standard deviation 
was set to 1.5. For units with multiple measurements of 
penneability (e.g., parameter efta), the standard deviation 
of the log of the measurements was used (SNL 2007, 
section 7.2.2). Because the uncertainty of permeability 
multipliers is to some extent already accommodated in 
the uncertainties assigned to pertinent unit permeabilities, 
these were set to 0.5 (except for ieum and xcum which 
were set to 0.17 to ensure low permeabilities for these 
units in the altered northern region). Fault uncertainties 
were set to 0.67 (except for 0.33 for 4""'lz, reflecting 
the fact that it is known to be a conductive feature) . 
Anisotropy uncertainty was set to the reasonably large 
value of 0.5 to reflect the range of vertical anisotropies 
that are possible in this alluvial and fractured volcanic 
system. Vertical head gradient multiplier uncertainties 
were specified as 0.02 to avoid unrealistically large 
vertical gradients. The infiltration multiplier uncertainty 
was set to 0.5 to reflect uncertainty and complexity of the 
infiltration processes. It should be noted that in specifying 
the uncertainty of parameters in this manner, exact 
characterization is not necessary; however, it is important 
that uncertainty be geologically reasonableness (e.g., a 
crystalline unit at depth would not have a permeability 
overlapping that of surface sandstone). An advantage of 
working in the log domain is that variability is implicitly 
expressed in terms of factors rather than absolutes, which 
prevents implicit parameter negativity where parameter 
values are small and uncertainties are large. 

Additional parameters (not adjusted during the model 
calibration process) were introduced in the linear analysis 
described subsequently to assess their contributions to 
model predictive error/uncertainty. To the extent that any 
of the values that were assumed for these additional 
parameters are incorrect, any prediction that depends 
directly on them has the potential for error. Moreover, 
any parameter whose values were misassigned during the 
calibration process because of inadvertent misassignment 
of fixed values to these five parameters also has the 
potential for error. These five parameters are (I) four 
multipliers that yield vertical gradients on the fixed heads 
assigned to the northern, southern, eastern, and western 
boundaries of the model domain, and (2) a multiplier 
applied to global recharge through the uppermost active 
layer of the model. 

Assignment of values to parameters and/or boundary 
conditions independently of the calibration process is not 
uncommon when constructing groundwater models. How­
ever, notwithstanding advice provided by authors such as 
Tiedeman et al. (2003, 2004), testing the repercussions 
of these assumptions by way of their impact on predic­
tive error is rare. Gallagher and Doherty (2006) point out 
that there are many occasions when arguments over the 
accuracy of particular boundary conditions between mod­
elers and reviewers can be quantitatively resolved through 
demonstrating whether the potential for predictive uncer­
tainty incurred through misassignment of these conditions 
is large or small (i.e., the impacts of such assumptions 
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on model predictions are identified). It is precisely such 
a line of inquiry that motivated us to consider whether 
vertical gradients on the boundaries of the YMPSZFM or 
a recharge multiplier over the potentiometric surface of 
the YMPSZFM had significant impacts on specific dis­
charge near Yucca Mountain. (Past reviews of the model 
have questioned whether vertical gradients on the bound­
aries or changes to infiltration could significantly impact 
estimates of specific discharge.) Those assumptions (such 
as that of no vertical gradient on the model boundaries) 
that have limited capacity to induce error in critical model 
predictions require little attention in this process. For 
those that do (like the recharge multiplier), the impact 
of different hydrogeological opinions can be quantified. 

A total of 58 model parameters were deemed as 
adjustable for the purpose of linear analysis (Le., all 
parameters listed in Table AI). This was decreased to 
53 for nonlinear analyses. 

Observations 
Steady-state heads from wells in the model domain 

were used for model calibration (SNL 2007). Historical 
head data for these wells are of varying quality, with 
some suspected of being perched and thus not being truly 
representative of regional groundwater conditions. Dur­
ing calibration, relative weighting of head measurements 
was such that those believed to be of higher credibility 
received greater weights. Moreover, those wells indicat­
ing an upward gradient (flow from the deep carbonate 
aquifer to the overlying volcanic units) were more heav­
ily weighted, as were those along the inferred f10wpath 
from beneath the proposed repository. Figure 2 shows the 
calibrated water table and the corresponding residuals for 
each calibration well from SNL (2007). 

Groundwater fluxes at YMPSZFM boundaries com­
puted by the Death Valley Regional Flow System 
(DVRFS) model (Belcher 2004) also comprised part of the 
calibration dataset; see SNL (2007) for further details of 
the role that the DVRFS played in setting boundary condi­
tions for the YMPSZFM. A total of seven such "measure­
ments" were included in the calibration dataset, one per­
taining to the northern model boundary, another pertaining 
to the western model boundary, and five pertaining to the 
eastern model boundary (indicated with differently styled 
lines in Figure 2). Flow through the southern boundary 
was not targeted because it is necessarily the sum of all 
other flows into (or out of) the system (SNL 2007). These 
flux observations were not weighted heavily because they 
provide only general guidelines for flow at this scale. 

Model Calibration 
Contributions that different groups of observations 

(Table 1) make to the overall reduction in predictive 
uncertainty accrued through the process of model cali­
bration is discussed subsequently. As described by SNL 
(2007), parameter adjustment during calibration of the 
YMPSZFM was undertaken using the PEST (Doherty 
2009b) package, supplemented by some manual adjust­
ment where deemed necessary (SNL 2007). 
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The C(p) and C(e) Matrices 
Equations 8, 12, and 19 cite a C(p) matrix express­

ing the innate variability of parameters employed by the 
model. For parameters that represent permeability, the 
respective diagonal elements of this matrix express the 
range of permeabilities that, from hydrogeological con­
siderations alone, these units are likely to possess before 
constraints on their variability are imposed by the neces­
sity that model outputs fit the calibration dataset. Similar 
considerations apply to other parameter types. As stated 
previously, the C(p) matrix is an expression of the state 
of precalibration hydrogeological knowledge and hydro­
geological uncertainty. 

To make use of Equations 12 and 19, all parameters 
were assumed to possess log-normal probability distribu­
tions (a typical assumption for geologic materials); the 
standard deviation of each distribution (in 10glO space) 
appears in the final column of Table AI. As no statisti­
cal correlation is assumed to exist between any pair of 
parameters, C(p) is diagonal. 

An implicit attempt was made to estimate relative 
values for the elements of the (ac;sumed diagonal) C(£) 
matrix prior to model calibration, by assigning weights 
to observations in inverse proportion to the suspected 
level of noise associated with each. On completion of 
the calibration process, C(£) was computed from the 
(diagonal) weight matrix Q using Equation 3, with the 
reference variance a~ chosen such that the postcalibration 
objective function <l> was equal to 161, which is the 
number of observations comprising the calibration dataset. 

The Prediction 
The uncertainty and error variance of only one 

prediction is analyzed using particle tracking simulations; 
specifically the specific discharge (path length divided by 
travel time) is averaged over 100 particles released at 
random locations below the repository and tracked until 
they cross UTM northing 4,073,761 m (approximately 
5 km south of the repository midpoint). For the calibrated 
model, this is 0.36 m1year (SNL 2007). End members of 
the 100-particle plume computed by the calibrated model 
have specific discharge values of 0.11 and 0.66 m/year. 
Although this analysis focuses on only one prediction of 
interest to provide a specific example for analysis, it could 
be applied equally well to any other model prediction. 

Results 

Calculation of Sensitivities 
Implementation of both linear and nonlinear uncer­

tainty and predictive etTOr analysis requires that sensitivi­
ties of the model prediction, and of all model outputs for 
which there are corresponding field measurement, be com­
puted with respect to all model parameters (i.e., a Jacobian 
matrix). This was achieved here using finite parameter 
(central) differences, with each parameter being varied by 
1 % of its current value when calculating these differences. 
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Figure 2. Head residuals and the calibrated potentiometric surface (SNL 2007). The CraterFlat group is indicated with 
circles, HighHead with squares, ModGrad with plusses, NyeCounty with diamonds, Other with upward triangles, Path with 
downward triangles, Perched with crosses (large negative residuals), and UpGrad with stars. The lateral extents of the five 
eastern boundary flux target segments are indicated with differently styled lines. A distance of 5 km south of the middle of 
the repository is illustrated with a red line. 

linear Analysis 
Predictive Uncertainty 

Use of Equation 19 to compute postcalibration uncer­
tainty of specific discharge predictions reveals that: 

• The precalibration standard deviation of predictive 
uncertainty is l.46 mJyear, equivalent to a variance of 
2.12 (mJyearf. 

• The postcalibration standard deviation of predictive 
uncertainty is 1.06 m/year, equivalent to a variance of 
1.12 (mJyear)2. These results are consistent with the 
unceltainty range of factors of 1/8.93 and 8.93 (selected 
from a log-transformed piecewise uniform distribution) 
used in other Yucca Mountain uncertainty analyses 
(SNL 2008, Section 6.5 .2.1 [a]). 

It is apparent from the results that constraints on 
parameter values imposed by asking the model to replicate 
site data reduce the uncertainty of predicted specific 
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discharge (and, by inference. predictions of long-term 
contaminant movement that are potentially important to 
performance assessment). However, relatively speaking, 
the reduction in uncertainty is not great. 

It is noteworthy that the computed uncertainties stated 
above (e.g., 1.06 mJyear) are greater than the value of 
the prediction to which they pertain (i.e., 0.36 mJyear). 
Greater linearity in the relationship between this predic­
tion and model parameters might have been achieved if 
the log of specific discharge was designated as the pre­
diction of interest rather than the specific discharge itself. 
That is, the predicted value of 0.36 mJyear with a post­
calibration standard deviation of 1.06 mJyear might be 
better represented as -O.44log(mJyear) with a standard 
deviation of 0.02 log(m/year), but the intuitive feel of 

the magnitude would be lost. Furthermore, because the 
focus of linear analysis of this type is less to quantify 
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Table 1 
Names of Groups into Which Observations Were Subdivided 

Observation Group Name Number of Measurements 

CraterFlat 7 head data 
HighHead 4 head data 

ModGrad 4 head data 

Nye COUll ty 25 head data 
Other 50 head data 
Path 35 head data 

Perched 15 head data 

UpGrad \0 head data 
Flux_N I flux datum 
Flux_W I flux datum 
Flux_E 5 flux data 

predictive uncertainty/error than to compare these quan­
tities (e.g., before and after calibration), the use of native 
rather than log values probably does not have a significant 
detrimental effect in this study. 

Precalibration and postcalibration contributions of all 
parameters used in the YMPSZFM to the uncertainty 
variance of predicted specific discharge (Figure 3) are dis­
cussed next. The contribution to predictive uncertainty 
variance made by a particular parameter is calculated 
by repeating the predictive uncertainty computation while 
employing an assumption that the parameter whose con­
tribution is sought is perfectly known [and hence that the 
corresponding element of the C(p) matrix is zero] . For 
ease of description, the resulting decrease in predictive 
uncertainty variance is defined as that parameter's contri­
bution to uncertainty for the prediction. 

The following features of Figure 3 are of interest: 

1. It is not impossible for the postcalibration contribution 
to predictive uncertainty by a particular parameter to 
be greater than its precalibration contribution. This 
is an outcome of the definition of "contribution" as 
the loss in predictive uncertainty variance accrued 
through acquiring perfect knowledge of a parameter's 
value through means outside of the calibration process. 
If a certain parameter is such that it can only be 
estimated in conjunction with another parameter (i.e. , 
it is correlated), and if a prediction is sensitive to that 
other parameter, then acquisition of perfect knowledge 
of the first parameter can yield better estimates for the 
second parameter through the calibration process, and 
hence of any prediction that depends on that second 
parameter. 

2. Uncertainties in vertical gradients attributed to fixed 
heads along model boundaries make only a small 
contribution to the uncertainty of predicted specific 
discharge. That is, the sensitivity of the prediction of 

860 s.c. James et al. GROUND WATER 47, no. 6: 851 - 869 

Description 

Measurements taken in the Crater Flat geologic units 
Heads in northern portion of model domain that are 

important in establishing an upward gradient in the 
carbonate aquifer 

Measurements taken in west of Yucca Mountain in a 
region of moderate hydraulic gradient 

Wells in Nye County 
Other head measurements 
Wells along the inferred flow path from below the 

repository 
Water levels suspected of being perched (minimally 

weighted) often in the northern region 
Measurements showing an upward hydraulic gradient 
Flux through northern model boundary 
Flux through western model boundary 
Flux through eastern model boundary (indicated in 

Figure 2) 

interest to these head gradients is not as great a<; it is 
for other model parameters. 

3. Not surprisingly, uncertainty in the recharge multiplier 
makes a significant contribution to uncertainty in 
predicted specific discharge because increased recharge 
directly increases groundwater flux. 

4. Postcalibration predictive uncertainty is dominated by 
contributions from permeability parameters, particu­
larly efppa, O IlU, and lIcel/. The efppa unit is impor­
tant because it is present at the water table below the 
repository where most particles are introduced into the 
model. The ovu is regionally extensive in the vicinity 
of the repository. Although less clear as to its impact, 
the lICCU serves as an aquitard between the lower car­
bonate aquifer and the overlying volcanic units and 
is salient to establishing the regional upward gradi­
ent. Fault permeabilities sefz and stfz are also large 
contributors to uncertainty because they are important 
in establishing the gradient in the vicinity of Yucca 
Mountain. 

We assess in two ways the extent to which individual 
observations, or families of observations, contribute to 
the calibration process by reducing the uncertainties of 
key model predictions. The first method is to repeat the 
calculation of predictive uncertainty using Equation 19 
with selected observations removed, thereby calculating 
the increase in predictive uncertainty variance incurred 
through their omission. The second method is to compute 
predictive uncertainty after removing all observations 
except those comprising the group of interest, and then 
computing the reduction from precalibration predictive 
uncertainty accrued through use of a calibration dataset 
comprising only these observations. Figure 4 depicts 
outcomes of these calculations for each of the observation 
groups listed in Table 1. 
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Figure 4a in particular indicates the importance of the 
Ffux_e and HighHead observation types in enhancing the 
model's ability to predict specific discharge. This is not 
surprising, given that the high-head region in the north 
of the model domain drives flow through the system and 
establishes an upward gradient in the carbonate aquifer, 
and that the flux through the eastern boundary is relatively 
large (SNL 2(07). 

It is of interest to note that Equation 19 can be 
employed not only to compare the worth of existing obser­
vation types but also to evaluate the relative efficacy of 
future data-acquisition strategies. The actual values of 
measured data are not specified in Equation 19-only 
their noise covariance matrix must be estimated. This 
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means that there is no requirement for a measurement 
to have been made before its effectiveness in lowering 
the uncertainty of a key prediction is assessed. A similar 
approach was pursued by Hill et al. (2001) and Tiede­
man et al. (2003, 2004) in assessing the relative ade­
quacy of different data-acquisition strategies. However, 
Equation 19 provides a more rigorous basis for analysis 
of data worth in highly parameterized contexts. 

Predictive Error Variance 

Figure 5 shows the error variance of the specific 
discharge computed using Equation 12 plotted against 
the number of nontruncated singular values used in 
computation of the R matrix through Equation 13. Also 
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Figure 5. Error variance (solid) of predicted specific dis­
charge for different numbers of pretruncation singular val­
ues. Also shown are the contributions to predictive error 
variance made by the null-space (short-dashed) and solution 
space (long-dashed) terms of Equation 12. 

shown are the contributions to predictive error variance 
from the null-space term of this equation (the short­
dashed curve falling with increasing number of singular 
values) and from the solution space term of this equation 
(the long-dashed curve rising with increasing number 
of singular values). A minimum error variance of 1.17 
(m/yearf is achieved at 16 singular values; however, 
the error variance is nearly constant between 12 and 16 
singular values. As expected, the value of 1.17 (m/yearf! 
is slightly above the postcaiibration predictive uncertainty 
variance of 1.12 (m/yearf computed using Equation 19. 
However, the proximity of these values illustrates that for 
the YMPSZFM, calibration using SVD with between 12 
and 16 pretruncation singular values leads to predictions 
whose variances approach their theoretical lower limits 
based on the available calibration dataset. 

The dominant contribution from the null-space term 
to predictive error variance should be noted. The null­
space term encapsulates contributions to potential predic­
tive error arising from the substantial amount of parameter 
value detail that is simply beyond the reach of the calibra­
tion process. To the extent that a prediction (e.g., specific 
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discharge) is sensitive to this missing detail , its potential 
for error is not reduced during calibration . 

Parameter Identifiability 
Parameter identifiability, computed using Equa­

tion 17 on the basis of truncation at 13 singular values 
(Figure 6), shows that only five parameters possess an 
identifiability that approaches I, these being the boundary 
head multiplier parameters (wmul, emul, smul, and nnw/) 
and the leat I parameter. About 15 other parameters have 
midrange identifiability, whereas the remaining parame­
ters have small or zero identifiability. To the extent that a 
prediction is sensitive to any of this la'it group of param­
eters, its postcalibration potential for error is not reduced 
at all by the calibration process based on the available 
dataset. 

Parameter Uncertainty and Error Variances Reductions 
Figures 7a and 9b depict relative parameter uncer­

tainty variance reduction (calculated using Equation 19) 
and relative parameter error variance reduction (based 
on 12), respecti vel y, for all parameters used in this 
study of the YMPSZFM. These graphs are self-similar 
and some correlation to the identifiability graph of 
Figure 6 is obvious; however, some differences are also 
apparent: 

1. As expected, parameter uncertainty variance reduction 
is greater than parameter error variance reduction. 

2. As also expected, the relative uncertainty/error vari­
ance reduction of each parameter is less than its iden­
tifiability, with the difference between the two rising 
with the extent to which a parameter is associated with 
singular values of higher index. 

Figure 7 encapsulates the insight into the geology 
gained through this case study. Specifically, the precal­
ibration uncertainty in a HGU's permeability (Table A I) 
is reduced by the square root of the factor shown on the 
bar chart. For many of the HGUs, there is little to no 
reduction in uncertainty indicating that the current dataset 
does not provide information on that unit's permeability 
(based on the current conceptual model as implemented in 
the FEHM numerical model). For many of the faults and 
the Crater Flat units below Yucca Mountain (efta, cjbcu, 
Lfppa in Figure I), there is some notable reduction in the 
precalibration uncertainty range listed in Table AI . 

Nonlinear Analysis 
Constrained Maximization/Minimization 

One method through which the uncertainty associ­
ated with a prediction made by a nonlinear model can be 
examined is to maximize and then minimize that predic­
tion (altering model hydraulic properties in the process), 
subject to the joint constraints that: 

1. Model outputs corresponding to members of the cal­
ibration dataset do not differ from their calibration 
values by an amount that is greater than a plausibility 
threshold that is established by the covariance matrix 
of measurement/structural noise, C(€). 
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2. Null-space-projected differences between parameters 
corresponding to the maximized/minimized model pre­
diction and those comprising the calibrated parameter 
set are compatible with the covariance matrix C(p) of 
innate parameter variability . 

These conditions must be met at a user-specified 
level of confidence, which for these analyses was set to 
99.7%. This corresponds to 3 standard deviations on either 
side of the mean for a normal distribution, which both 
measurement/structural noise and model parameters are 
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assumed to follow. Thus, the prediction of interest (spe­
cific discharge) is maximized and minimized subject to the 
following constraint; the multicomponent objective func­
tion comprising squared differences between model out­
puts and their calibrated counterparts and the null-space­
projected differences between parameter values computed 
as an outcome of prediction maximization/minimization 
and their calibrated counterparts (each of these standard­
ized in terms of their respective covariance matrices) must 
rise not higher than 9 (the square of 3 standard deviations). 
See the work of Tonkin et al. (2007) for further details. 
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Figure 7. (a) Relative uncertainty variance reduction and (b) relative error variance reduction for parameters of the 
YMPSZFM where calibration is undertaken using truncated SVD with truncation at 13 singular values. 

Maximized and minimized specific discharges are 
1.34 and 0.08 m/year, respectively. Recall that spe­
cific discharge calculated by the calibrated model is 
0.36 m/year, and that its linearly calculated postcalibra­
tion uncertainty standard deviation is 1.06 m/year. The 
maximized prediction is about 1 standard deviation higher 
than that of the calibrated model, whereas a difference of 
3 standard deviations is expected (notwithstanding the fact 
that some discrepancies are to be expected between linear 
and nonlinear analysis as a result of the more approximate 
nature of the former). This discrepancy arises because the 
maximization effort was terminated after 480 model runs 
(six nonlinear iterations) as model run times became too 
long in response to PEST's introduction of parameter val­
ues that were designed to raise specific discharge. Specifi­
cally, the particle tracking routine used to estimate specific 
discharge required that all injected particles cross the 5-
km radius inscribed around the repository. The combina­
tion of parameters selected by PEST during this predictive 
maximization exercise resulted in some particles having 
exceedingly low velocities, thus requiring an impracti­
cally long run time for computation of their travel times 
over the selected distance. When comparing the range 
of specific discharge values obtained from the maximiza­
tion/minimization process to corresponding linear esti­
mates of specific discharge predictive uncertainty, recall 
that six "adjustable" parameters in the linear analysis were 
held fixed for this nonlinear analysis (vaniso, imul, nmul, 
s11lui, emul, and wmul). Linear analysis demonstrated that 
all of these but imul made only small contributions to pre­
dictive uncertainty. Omission of imul from the nonlinear 
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predictive maximization/minimization process may have 
lowered the computed range of predictive variability. 

This highlights one of the limitations of the predic­
tive maximization/minimization approach to exploration 
of nonlinear predictive uncertainty. Other limitations 
(learned from application of the methodology by the 
authors in other settings) include the following: 

I. Experience supports the hypothesis that the success 
of the constrained maximization/minimization process 
depends heavily on accurate computation of deriva­
tives of model outputs with respect to adjustable 
parameters. Errors in model outputs resulting from 
incomplete model convergence and/or numerical insta­
bility on the part of the model are amplified when 
computing differential model outputs as estimates 
of derivatives. Central-differenced derivative calcu­
lations, which require two model runs per parame­
ter, improve accuracy, but double the computational 
burden. 

2. Constrained prediction maximization/minimization is 
particularly demanding for highly parameterized mod­
els where prediction hypersurfaces and elongate objec­
tive function hypersurfaces intersect at shallow angles. 
Although PEST can partially overcome these chal­
lenges by incorporating a line search along directions 
of computed predictive maximization/minimization, 
this is an inherently nonparallelizable process, which 
further contributes to the total time required for con­
strained maximization/minimization of a prediction. 

3. When a model has many parameters, the run-time chal­
lenge is increased. The necessity of calculating many 
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finite-differenced parameter derivatives during each 
maximization/minimization iteration requires a signif­
icant effort. The use of predictive super-parameters 
can ease this burden (Tonkin et al. 2007). However, 
using parameter subspaces for predictive maximiza­
tion/minimization is less effective than when using 
them during calibration as they can compromise the 
ability of the maximization/minimization process to 
find predictive extremes. 

Calibration-Constrained Monte Carlo 

Calibration of the YMPSZFM was accomplished 
using PEST in conjunction with some hand-adjustment 
of parameter values (SNL 2007). The final value of 
the objective function (weighted sum-of-squares residual 
between modeled and measure heads) obtained through 
this process was 633. 

When implementing calibration-constrained Monte 
Carlo analysis for the YMPSZFM, which is referred to 
herein as null space Monte Carlo (NSMC) to conform 
with terminology used in PEST documentation, a total of 
200 parameter sets were first generated on the basis of 
the C(p) matrix already discussed. Each set comprised 58 
parameters, 52 of which were assigned different values 
in each realization. As for the constrained nonlinear 
maximization/minimization process discussed previously, 
vGniso, imul, I1mul, s/11ul, emui, and wnw! were fixed 
at their nominal values during NSMC analysis; these 
variables were not considered important for this analysis 
because they were not part of the License Application. 

For each randomly generated parameter set, a modi­
fied parameter set was then computed by (I) subtracting 
the calibration parameter set from the random parameter 
set; (2) projecting the resulting parameter difference set 
onto the calibration null space; and (3) adding the pro­
jected difference to the calibrated parameter set. 

The calibration null space was defined through SVD 
of the X1QX matrix of Equation 13 in the same manner 
as used in the linear analysis (with X calculated on the 
basis of the calibrated parameter set). Again, a solution 
space dimensionality of Equation 13 was used because 
it corresponds to the minimum of the predictive error 
variance curve depicted in Figure 5. 

For most parameter sets computed in this fashion, 
the objective function was less than 1000, thus indicat­
ing a "nearly calibrated" model. To judge the efficacy 
of null-space projection in achieving near-calibration, a 
number of model runs were undertaken using prenull­
space-projected random parameter sets; objective func­
tions between 106 and 107 were computed for these 
parameter sets. As expected, null-space projection sub­
stantially (although not completely because of model 
nonlinearity) removes parameter combinations that decal­
ibrate the model. 

Next, each of the modified random parameter sets was 
used to parameterize the model and was then subjected to 
further modification as required to reduce the objective 
function to a level deemed to recalibrate the model (less 

than 650). This process was made as efficient as possible 
in the following ways: 

I. Only solution space parameter projections were ad­
justed to lower the objective function; thus, each 
calibration exercise required adjustment of only 13 
super-parameters. 

2. The first iteration of each calibration process was based 
on super-parameter sensitivities computed using the 
calibration parameter set; thus, the first iteration of 
each of the 200 calibration exercises required only a 
single model run-this being undertaken to compute 
the objective function for the modified parameter 
values. 

3. The calibration process was immediately terminated if 
the objective function fell below 650, which is only 
slightly above the objective function of 633 achieved 
through calibration. 

Of the 200 calibration exercises conducted in this 
manner (each based on a different null-space-projected 
random parameter set), all reached an objective function 
of less than 650 by the end of the second iteration. 
Nine results were discarded as they exhibited flow paths 
from the repository to the eastern model boundary; this 
same constraint was applied during the manual component 
calibration of the YMPSZFM model and is consistent with 
site hydrochemical data and analyses (SNL 2007). Thus, 
191 calibration-constrained parameter sets were obtained. 
The average cost in model runs was a mere 4.3 runs per 
calibrated parameter set. 

The frequency distribution for the wwJz parameter 
(the permeability of the Windy Wash Fault Zone) aris­
ing from the 191 accepted model calibrations (Figure 8) 
shows that this parameter is moderately identifiable (as in 
Figure 6); hence, it is partly constrained by the calibration 
process, and partly "unconstrained." It can vary as long 
as other parameters vary in harmony with it and thereby 
maintain model calibration. The precalibration standard 
deviation of the log of this parameter was assumed to be 
0.67 (Table AI); its calibrated value is 4.8x 10- 16 m2, 

the log of which is -15.32. Although the precalibration 
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Figure 8. Frequency distribution of calibration-constrained 
values of the permeability of the Windy Wash Fault Zone, 
parameter wwfz. 
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Figure 9. Frequency distribution for specific discharge. 

standard deviation allows a broad permeability distribu­
tion, respect for calibration constraints forces a skewed 
distribution that does not allow large permeabilities. This 
is consistent with current understanding of the site where 
the Windy Wash Fault Zone acts as a barrier to flow . 

Predictive model runs were made using the 191 
calibration-constrained parameter sets. The frequency dis­
tribution of the specific discharge (Figure 9) shows that 
the long tail allows some large values of specific dis­
charge. A pleasing result is that the length of this tail is 
of the same order as 3 standard deviations of predictive 
uncertainty as calculated through linear analysis. 

Exact computation of predictive probabilities at the 
extremes of a probability distribution based on Monte 
Carlo analysis requires a large number of model runs. 
Nevertheless, enough calibration-constrained parameter 
fields have been generated to provide a strong indication 
of the range of predictive possibilities that are compatible 
with both hydrogeological knowledge and with observa­
tions of system state. Because of the model run efficiency 
achieved when generating calibration-constrained parame~ 
ter sets, many more such sets could be produced relatively 
easily to further refine this analysis if required. 

Discussion 
This case study chiefly serves to demonstrate and 

illustrate the spectrum of powerful analyses that can be 
readily undertaken as an adjunct to highly parameterized 
model calibration. Several findings of potential relevance 
to the YMPSZFM are also noteworthy. 

Uncertainty in predictions of specific discharge, 
which has historically been an important variable in 
total system performance assessment (TSPA), has mini­
mal dependence on uncertainties in assignment of vertical 
gradients applied to the model boundaries. This is to be 
expected because the boundaries are far enough from the 
flow paths not to influence the specific discharge pre­
dictions near Yucca Mountain. Specific discharge shows 
moderate sensitivity to a model-wide infiltration multi­
plier and inherits uncertainty as a result of potential error 
assigned to recharge across the YMPSZFM. Although not 
unexpected, it is worth noting that sensitivity of model 
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predictions to recharge has in fact been taken into account 
in the TSPA through incorporation of the effects of an 
uncertain parameter, namely the groundwater-specific dis­
charge multiplier. 

Constrained maximization/minimization of specific 
discharge demonstrates that this can range from 0.08 to 
1.34 m/year, which is well within the factors of 1/8.93 and 
8.93 established by SNL (2008). However, NSMC anal­
ysis yields a range of 0.10 to 4.12 m/year. Although the 
highest of these values is in excess of the factor of 8.93 
(nominal value of 0.36 m/year x 8.93 = 3.21 m/year) 
established by SNL (2008), only the single 4.12-rn/year 
value exceeds this. 

Finally, although only the wwfz (Windy Wash Fault 
Zone) parameter was discussed in this article, other model 
parameters also demonstrated NSMC parameter ranges 
consistent with current understanding of the site. Through 
the calibration process, parameter variance ascribed to 
our lack of knowledge about a particular parameter is 
tempered with information gained through constraining 
parameters in accordance with historical observations of 
system state. Through this process, it was found that units 
or features thought to be barriers to flow show distribu­
tions skewed toward lower permeabilities. These sorts of 
results provide insight into the broader hydrogeology of 
the region by reinforcing hypotheses that some faults such 
as the Solitario Canyon Fault (sefz) and the Highway 95 
Fault (h95z) act as barriers to flow. 

Conclusions 
Using the calibrated YMPSZFM, this article has 

demonstrated that the use of a model in performance 
assessment or environmental management can extend 
well beyond that of simply calibrating the model and 
then making a prediction. In particular, relatively simple 
analyses undertaken as adjuncts to model construction and 
calibration can provide the following insights: 

I . Identification of observations that are most effective 
in achieving this reduction in uncertainty (e.g., High­
Head, Flux_e, and NyeCounty are critical to reducing 
uncertainty in specific discharge, see Figure 4). 

2. Assessment of the reduction in predictive uncer­
tainty that is accrued through model calibration (see 
Figure 5). 

3. Assessment of the identifiability of each model param­
eter (see Figure 6). 

4. Identification of the parameters (including features 
such as poorly known boundary conditions) that are 
most instrumental in maintaining predictive uncer­
tainty at its current level (e.g., leatl and several of the 
fault parameters are important to reducing uncertainty 
in specific discharge, see Figure 7). 

5. Objective assessment of the uncertainty associated 
with predictions of interest (see Figure 9). 

6. Identification and ranking of observations that, if 
gathered, would afford the greatest reductions in the 
uncertainties of key model predictions. 
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A key feature of the analyses described herein is that 
they should be undertaken as adjuncts to parameterization 
of a model that reflects all aspects of system complexity 
that are relevant to predictions of interest; that is, the 
model must include all features and processes to which 
requested predictions are sensitive. This will nonnally 
result in the use of many more parameters than are 
uniquely estimable on the basis of most calibration 
datasets, resulting in formulation of an ill-posed inverse 
problem that must be solved during model calibration. The 
analyses documented herein do not require that parameter 
lumping and fixing strategies be implemented to ensure 
well-posedness of the inverse problem before undertaking 
calibration. Rather, these analyses readily accommodate a 
high-dimensional calibration null space and are able to 
quantify the limitations imposed on the model's ability 
to make accurate predictions by the existence of this 
null space. Calibration and uncertainty analyses that do 
not accommodate or acknowledge the null space, and 
which require preanalysis parameter lumping and fixing 
to artificially formulate a well-posed inverse problem, 
provide far fewer insights. 

The methodologies demonstrated in this article are 
just as applicable to models that include hundreds or 
even thousands of parameters as they are to the YMP­
SZFM that employs only tens of parameters. Heavily 
parameterized models may be crucial to risk assessment 
when significant geological heterogeneity exists, or where 
either continuous or discrete geological entities could 
rapidly convey contaminants to locations that threaten 
environmental health. However, with the exception of 
just one of the methodologies discussed herein, the large 
numbers of parameters involved in such analyses would 
require an increase in the numerical burden required to 
conduct them. That exception is the null space Monte 
Carlo methodology. Its relative immunity to the increased 
numerical burden of accommodating a far greater level of 
complexity in model parameterization is an outcome of 
its following features: 

I . As Tonkin and Doherty (2009) demonstrate, the 
methodology can be used in conjunction with complex 
stochastic parameter fields (which may involve hetero­
geneity at the cell or element level), despite the fact 
that only a limited number of adjustable parameters are 
employed for recalibration of each field. 

2. Because the dimensionality of the calibration solution 
space is a function of available data rather than the 
level of heterogeneity represented in a model, the 
numelical burden of recalibration based on solution 
space parameter eigencomponents does not increase as 
parametelization complexity increases. 

3. Computation of the sensitivity of a prediction to all 
model parameters is not required. 

4. Once a set of calibration-constrained stochastic fields 
has been obtained, these can be used to explore the 
uncertainty of any number of predictions made by the 
model. 

Although useful quantitIes such as parameter con­
tributions to current predictive uncertainty are not as 
easily obtained through nonlinear analysis as they are 
through linear analysis, Monte-Carlo-based methods have 
the advantage that parameter fields giving rise to predic­
tions of rapid groundwater flow and contaminant transport 
become readily apparent, so that the link between low 
probability predictions and the features that may give rise 
to them is obvious. 

Regardless of which of the methods documented 
herein augments understanding of predictions made by 
an environmental model, this article demonstrates that 
by (I) including all parameter complexity in a model 
that is relevant to predictions required of that model, 
and (2) undertaking analyses that expose the degree of 
uncertainty or error associated with model parameters and 
predictions, much more can be gained from a modeling 
exercise than simply making a few predictions. In fact, a 
comprehensive assessment can be made of the strengths 
and weakness of a current dataset in assessing environ­
mental risk. 

Overall, the thorough and detailed predictive uncer­
tainty analyses for the Yucca Mountain site are strongly 
supportive of the independent assessment of uncertainty 
used in the repository performance assessment analyses 
for the YMP License Application where a Bayesian anal­
ysis yielded a range for the specific discharge multiplier 
of 1/8.93 to 8.93. In our analysis, only one NSMC real­
ization of the 191 parameter fields exceeded this span 
indicating that the range used in the License Applica­
tion is appropriate more than 99% of the time. More­
over, 8.93 x 0.36 m/year is 3.21 m/year, which is 0.36 + 
2.64 x 1.08(5 + nO' .,) or n = 2.64 standard deviations. 
Hence, 99.6% of the linearized specific discharge distribu­
tion is within the maximum specific discharge multiplier 
of 8.93 used in the License Application. Moreover, many 
of the faults included in this model were at least some­
what identifiable, and those hypothesized to be barriers 
to flow wtj,fz, seJz, and 1195z were confilmed to behave 
as such through calibration-constrained null-space Monte 
Carlo runs. 
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Supporting Information 
Supporting Information may be found in the online 

version of this article: 

Parameter and observation contributions to predictive 

error variance are described in the supporting informa­
tion and are shown in Figures S I and S2. These are the 

frequentist counterparts to the Bayesian predictive uncer­
tainty variance in Figures 3 and 4. 

Figure 81. Precalibration (black) and postcalibration 

(white) parameter contributions to specific discharge error 
variance where calibration is notionally implemented 

using truncated SVD. Total precalibration predictive error 
variance is 2.12 (mlyear)2 , whereas total postcalibration 

predictive error variance is 1.17 (m/year) 2 • 

Figure 82. (a) Increase in predictive error variance 
accrued through omission of different observation types 

from the calibration process. (b) Reduction in predictive 
error variance from its precalibration level for different 

observation types as sole members of the calibration 
dataset. 

Please note: Wiley-Blackwell are not responsible for 
the content or functionality of any supporting materials 

supplied by the authors. Any queries (other than missing 
material) should be directed to the corresponding author 
for the article. 
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Appendix 
Model parameters are listed and briefly described in 

Table AI. 
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Table At 
Calibrated Permeabilities (third column) are in m 2 While Multipliers are Unitless. The Final Column Shows 

Precalibration Uncertainty for the Log of Each Parameter Representing the Authors' Best Estimate of a 
Parameter's Standard Deviation (in Log Space; These are the Diagonal Elements of C(p». 

Parameter Description Calibrated Value 1710g 

;cu Intrusive Confining Unit (granite) 9.9 x 10- 17 0.78 
xeu Crystalline Confining Unit (granite) 1.0 x 10- 16 0.79 
leeu Lower Clastic Confining Unit 9.7 x 10- 17 0.78 
lea Lower Carbonate Aquifer 9.7 x 10- 15 0.3 
ucell Upper Clastic Confining Unit 9.8 x 10- 16 1.5 
uea Upper Carbonate Aquifer 1.1 x 10- 11 1.5 
lewl1 Lower Clastic Confining Unit Thrust 9.8 x 10- 19 1.5 
leatl Lower Carbonate Aquifer Thrust 5.6 x 10- 11 1.5 
vsul Volcanic and Sedimentary Units (lower) 1.1 x 10- 14 0.58 
ovu Older Volcanic Unit 9.8 x 10- 16 1.5 
efta Crater Flat-Tram Aquifer 9.4 x 10- 13 0.62 
efbeu Crater Flat-Bullfrog Confining Unit 5.2 x 10- 14 0.98 
efppa Crater Flat-Prow Pass Aquifer 3.1 x 10- 12 0.55 
WIIU Wahmonie Volcanic Unit 9.8 x 10- 14 1.5 
ehvu Calico Hills Volcanic Unit 2.4 x 10- 13 0.8 
pya Paintbrush Volcanic Aquifer 6.5 x 10-14 0.33 
Iml'a Timber Mountain Volcanic Aquifer 9.5 x 10- 14 0.33 
v.\"u Volcanic and Sedimentary Units (upper) 8.7 x 10- 13 1.5 
/fu Lava Flow Unit 8.9 x 10- 14 1.5 
fa Limestone Aquifer 9.8 x 10- 14 1.5 
oaa Older Alluvial Aquifer 1.5 x 10- 13 0.58 
yaeu Young Alluvial Confining Unit 9.9 x 10- 15 0.58 
yaa Young Alluvial Aquifer 9.8 x 10- 13 0.58 
;eum ;eu Northern zone permeability multiplier 0.3 0.17 
xcum xeu Northern zone permeability multiplier 0.2 0.17 
fecum feell Northern zone permeability multiplier 0.2 0.5 
Icam lea Northern zone permeability multiplier 0.2 0.5 
ueeum ueell Northern zone permeability multiplier 9.7 x 10-3 0.5 
ueam uea Northern zone permeability multiplier 2.0 x 10-2 0.5 
leeul1m lecul1m Northern zone permeability multiplier 9.8 x 10-3 0.5 
vsulm v.\"ul Northern zone permeability multiplier 1.0 x 10-2 0.5 
ovum ovu Northern zone permeability multiplier 9.9 x 10-3 0.5 
eflam efta Northern zone permeability multiplier 1.0 x 10-2 0.5 
efbewn ej1)cu Northern zone permeability multiplier 9.1 x 10-3 0.5 
efppam cfppa Northern zone permeability multiplier 1.4 x 10-3 0.5 
chvum ehvlI Northern zone permeability multiplier 2.3 x 10-3 0.5 
pvam pm Northern zone permeability multiplier 9.6 x 10-3 0.5 
tmvam Imva Northern zone penneability multiplier 9.8 x 10-3 0.5 
vsum VSII Northern zone permeability multiplier 1.0 x 10-2 0.5 
/film Ifu Northern zone permeability multiplier 1.0 x 10-2 0.5 
oaam oaa Northern zone permeability multiplier 1.0 x 10-2 0.5 
yaam yaa Northern zone permeability multiplier 1.0 x 10-2 0.5 
ymzm Yucca Mountain zone permeability multiplier 8.9 0.5 
4wfz Fortymile Wash Fault Zone 1.4 x 10-10 0.33 
hmfz Bare Mountain Zone 9.9 x 10- 16 0.67 
eff::. Crater Flat Fault Zone 9.7 x 10- 17 0.67 
h95z Highway 95 Fault Zone 1.0 x 10- 14 0.67 
swft Sever Wash Fault Zone 9.8 x 10- 18 0.67 
sefz Solitario Canyon Fault Zone 5.0 x 10- 16 0.67 
sifz Stage Coach Fault Zone 4.7 x 10- 16 0.67 
ww[z Windy Wash Fault Zone 4.8 x 10- 16 0.67 
wash Lower Fortymile Wash 2.0 x 10- 11 0.67 
vaniso Vertical anisotropy (unitless) 0.1 0.5 
nmul Vertical head gradient multiplier on the northern boundary I 0.02 
smul Vertical head gradient multiplier on the southern boundary I 0.02 
wmul Vertical head gradient multiplier on the western boundary I 0.02 
emul Vertical head gradient multiplier on the eastern boundary I 0.02 
imul Infiltration multiplier I 0.5 
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